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Abstract

Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two
disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at
different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines
the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression
measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that
a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical
relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways
and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci,
and multiple environments.
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Introduction

Epistasis has traditionally been discussed in two distinct

contexts, corresponding to the disciplines of classical molecular

genetics and quantitative genetics. In each case, the term describes

an interaction between alleles at two or more loci. However, the

methods for detecting epistasis and interpretations of the

underlying biology have kept historical divisions in place despite

calls for synthesis [1]. This is largely because the two fields

traditionally study different types of traits in different experimental

populations.

The classical epistasis experiment compares a double-mutant

with two associated single-mutants. Epistasis is present if the

observed double-mutant phenotype is categorized as being the

same as a single-mutant phenotype. This implies a specific type of

interaction in which an allele at one locus masks the effect of

variation at the second locus. This relationship is described as the

first locus being epistatic to the second, and can be interpreted as

one gene acting upstream of the other. This hierarchical

interpretation has been used to construct biological pathways

via a series of epistatic gene pairs. However, this approach is

limited by the necessity of easily observed and categorized

phenotypes [2].

In contrast, quantitative genetics examines traits that vary

continuously and cannot easily be categorized. Such trait

distributions result from the cumulative effects of many genes.

Each additional gene increases the possible combination of alleles,

and the number of possible phenotypes grows exponentially. An

individual’s phenotype is the sum of the allelic effects at each gene

and the effect of the environment. Epistasis is defined as a

deviation from these additive gene effects [3]. A quantitative

genetic model can include multiple loci and multiple interactions.

Epistasis in this sense describes a functional relationship between

genes in the context of a trait, but it includes both hierarchical

relationships and nonhierarchical relationships and there is no way

to distinguish between these.

Any genetic effect is only relevant to the population being

studied due to the presence of genetic background. Background is

genetic variation that is unobserved in the population and cannot

be modeled. The classical experiment is performed using

genetically homogenous laboratory strains so there is no

background. Quantitative genetics studies diverse populations

and background variation is almost always present. The

implication of this is that epistasis may be detected in one

experiment but not in another. This has led to criticisms that

epistasis in the quantitative genetic sense is a statistical construct

rather than a true representation of biology.

In fact, both approaches seek to illustrate underlying molecular

architecture and each has its strengths. A hierarchical interpreta-

tion of epistasis is attractive as increased focus is placed on genetic

pathways and systems diagrams. However, quantitative approach-

es are necessary to accommodate continuous data types such as

gene expression, metabolite concentrations, and fitness. Recent

literature suggests that such approaches are being adopted. For

example, while early large-scale fitness profiles in yeast deletion

mutants [4,5] were scored categorically, St Onge et al [6]

measured fitness in 650 double-deletion yeast strains and

employed a novel quantitative analysis.

PLoS Genetics | www.plosgenetics.org 1 2008 | Volume 4 | Issue 3 | e1000029



The rise in genomic techniques has broken down one of the

traditional barriers discussed above: the same traits are now being

used in both classical and quantitative settings [7]. Gene

expression is perhaps the most prevalent example. Instead of a

single phenotypic trait value, a vector of expression measurements

describes each individual. Expression profiling in single-deletion

yeast strains found that 34% of mutants showed twenty or more

differentially expressed genes [2]. Expression quantitative trait

locus (eQTL) mapping uses a linear modeling approach to

associate genetic variation with gene expression traits [8–12];

Storey et al. [13] found over thirty percent of traits were jointly

linked to two loci in yeast. When gene expression correlates with a

complex phenotype, the corresponding traits may reflect the

molecular basis of that trait at a level intermediate between

genotype and phenotype. Some studies suggest that epistasis is

pervasive among expression traits [14–16] and such traits may

have more QTLs than classical traits [13,17]. Since gene

expression is being used in both classical and quantitative contexts,

it is a valuable framework in which to compare the ability to

detect epistasis and interpret the nature of relationships between

genes.

We propose a framework for estimating and interpreting

epistasis using expression traits. Our goal is to accommodate the

continuous nature of the data, yet still preserve a hierarchical

interpretation of epistasis. Such interpretations are well established

for classical epistasis experiments [18], but have only recently been

studied for complex data [19]. We refine the classical interpreta-

tions by explicitly modeling gene expression. Gene effects and

interactions are estimated using a linear model, in a manner

comparable to eQTL mapping. Our method selects the best-fit

regression model for each trait, which describe the order and the

nature of gene function. Such relationships are the basic units of

genetic pathways and systems biology. We specifically address how

to use a continuous phenotype in a manner that is both statistically

sound and consistent with the classical approach.

We illustrate our method with publicly available expression

measurements from Dictyostellium discoideum wild type [20] and

deletion mutant strains [21]. This experiment is a classical epistasis

analysis that targets the genes of the protein kinase (PKA) pathway

and measures the gene expression profile of each strain.

Results

Modeling Epistasis for Continuously Variable Traits
In the classical epistasis analysis, triplets of deletion mutants

combine with a wild type to form a contrast. Each contrast

includes two single mutants and a double mutant. Each is

described relative to the known wild type phenotype. A

hypothetical example of a trait affected by two genes, A and B,

can be described as follows, where y is the trait value, m is the

expected value of the wild type, bA and bB are the effects of

deleting each gene, and e is an error term.

AzBz : y~mze

A{Bz : y~mzbAze

AzB{ : y~mzbBze

A{B{ : y~
mzbAze if A is epistatic to B

mzbBze if B is epistatic to A

(

This adheres strictly to the classical definition, but there is a

clear problem; there is no provision if the double mutant does not

fall neatly into the same category as one of the single mutants.

Gene expression traits fit poorly into the classical framework for

this reason. Expression is continuous and intermediate levels are

expected. Furthermore, even normalized trait values will inevita-

bly include some measurement error. For these reasons, the

double mutant observation is rarely the same as either of the single

mutant observations or the wild type. Previous studies have

attempted to circumvent this problem by relying on differences

between the mutants to determine the most similar mutant pair.

However, the assumption that expression is completely masked is

poor. To address these issues, we move away from comparing trait

values directly. Instead, we evaluate each deletion according to

whether it significantly affects the expression of the target and

associate unique patterns of significance with models of gene

action.

We use a linear model to estimate the effect of each deletion.

This is a general way to relate all mutants and the wild type

without making any assumptions about the nature of the double

mutant. We regress the trait value (e.g. expression) on indicator

variables representing the presence or absence of each wild type

allele and an interaction term. The interaction describes effects

that are unique to the double mutant. The same example

discussed above can be described as follows.

Trait value = Wild Type+Effect of deleting A+Effect of deleting

B+Interaction+error

y~mzbAxAzbBxBzbI xAxBze

xA~
0 for Az

1 for A{

(
xB~

0 for Bz

1 for B{

(

Various techniques can be used to fit such a linear model. We

first fit a full model and then use stepwise backwards selection to

drop model terms with coefficients that are not significant at a set

level. The resulting reduced model is termed the best-fit model.

For any trait, there are eight possible best-fit models. For clarity,

Author Summary

Epistasis has long had two slightly different meanings
depending on the context in which it is discussed. The
classical definition describes an allele at one locus
completely masking the effect of an allele at a second
locus. Such relationships can be interpreted as hierarchical,
and they can be combined to infer genetic pathways. In
quantitative genetics, epistasis encompasses a wide range
of interactions and can be extended to more than two loci.
These two definitions coexist because they are typically
applied to different types of study populations and
different types of traits. The current trend is to treat gene
expression as a trait in a variety of genetic backgrounds.
This provides reason to revisit epistasis in this new context.
We accommodate the continuous nature of gene expres-
sion using ideas from quantitative genetics, but retain the
hierarchical interpretation of the classical experiment.
These hierarchical relationships are the building blocks of
systems diagrams and genetic pathways. This framework
can serve as a foundation for future epistasis analyses
based on genomic data.

Modeling Epistasis
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we number the reduced models as follows:

Model 1 : y~mzbAze

Model 2 : y~mzbBze

Model 3 : y~mzbIze

Model 4 : y~mzbAzbBze

Model 5 : y~mzbAzbIze

Model 6 : y~mzbBzbIze

Model 7 : y~mzbAzbBzbIze

Model 8 : y~mze

When the best-fit model has been determined, we estimate

parameter values using that model for each trait. Thus, we have a

best-fit model and coefficient estimates for each trait. The terms in

each best-fit model represent the significant gene and interaction

effects acting on that trait. Individual coefficients represent the

estimated effect of deleting each gene. Model 7 corresponds to the

classical model above when the interaction between the two

deletions offsets the effect of one of them, either bI = 2bA or

bI = 2bB. Model 8 describes the case in which the deleted loci

have no effect on the trait.

A best-fit model describes each gene expression trait. As such,

we have dealt with the continuous variable problem. However, by

embracing a quantitative genetic model we have lost the appealing

feature of the classical experiment: the ability to interpret

hierarchical relationships. In the following section we identify

sixteen hierarchical relationships and propose that a specific best-

fit model supports each.

Interpreting Hierarchical Epistasis
In quantitative genetics, the interaction term in the above model

is considered epistasis. However, epistasis in this sense includes

both hierarchical and nonhierarchical relationships. Conversely,

while Model 7 can clearly be interpreted as hierarchical epistasis

with the conditions described above, it does not apply to all

possible hierarchies.

We considered all combinations of gene order and action within

simple ON/OFF models and then predicted the hypothetical

effect of deleting genes on each of them (Figure 1, Figures S1, S2,

and S3). There are four points of variation to model for each gene

pair relationship. The first is the identity of the upstream gene, i.e.

the gene order. Secondly, the upstream gene will turn the

downstream gene either on (enhance) or off (repress). Thirdly, the

downstream gene can enhance or repress the expression of a target

gene for which expression is observed. Lastly, we consider that the

upstream gene itself will be enhanced or repressed by some

initiating factor such as a developmental cue or environmental

perturbation. Avery and Wasserman [18] provide a general

framework that has been widely used for interpreting epistasis in

response to such signals, and note that the effect of a mutation is

only observable for a specific signal state. However, knowing the

signal state does not give any information about whether the

upstream gene is enhanced or repressed in that state. In our

models, we focus on the effect on the upstream gene. This model

has sixteen possible variants describing hierarchical relationships

between two genes and the target gene.

The key to our approach is connecting each of the sixteen

hierarchical models to one of the eight possible best-fit regression

models. If the deletion changes the state of a target gene relative to

the wild type in a mutant, then that deletion is predicted to have a

significant effect and it will be included in the regression model

corresponding to that hierarchical model. Figure 1 gives an

example of one possible model, in which A is enhanced by a signal;

A is an upstream repressor to B; and B enhances a target gene X.

We conclude that the corresponding best-fit regression model will

include coefficients for A and an interaction term. Note that if the

signal instead represses A, a different best-fit model represents the

same relationship between A and B.

We applied the same approach to each of the sixteen cases and

note several trends. First, the downstream gene’s effect upon the

target gene X does not influence the corresponding best-fit model.

This allows us to reduce the model space to eight hierarchical

relationships (Table 1). This observation is convenient, because

expression traits represent all the genes downstream of the

deletions. Regardless of the downstream gene’s direct effect, some

traits will be enhanced while others are repressed. When the

upstream gene is a repressor, four distinct regression models

represent four unique hierarchical relationships. We can uniquely

identify both the gene order and signal effect on the upstream

gene. We cannot discern gene order if the upstream gene is an

enhancer because the same best-fit model describes both

hierarchies. If the upstream gene is merely enhancing the effect

of the downstream gene, deleting either gene will affect the trait

gene similarly. Six of the eight possible best-fit regression models

correspond to the eight hierarchical relationships. It is notable that

hierarchies can be indicated even without an interaction effect in

the model.

Figure 1. Modeling the Relationship A Is an Upstream
Repressor of B. B in Turn Enhances a Target Gene X. In this example,
deleting A will change the state of the target gene from off to on.
Therefore, we include A’s effect in the corresponding regression model.
Deleting B leaves the target gene in the same state as the wild type and
its effect is not included. The AB double mutant is also not expected to
deviate from the wild type despite the significance of the A deletion.
Since A’s effect is already included in the model for this contrast, it must
be offset by the interaction term. We conclude that if A is enhanced by
the signal, A represses B, and B enhances X, the corresponding best-fit
regression model will include coefficients for A and an interaction term.
Similar logic applies to the case in which the signal represses A. The
signal represses A, thus deleting A has no downstream effects. We
expect only the coefficient corresponding to the downstream gene in
the best-fit model.
doi:10.1371/journal.pgen.1000029.g001

Modeling Epistasis

PLoS Genetics | www.plosgenetics.org 3 2008 | Volume 4 | Issue 3 | e1000029



We must also consider that there is no hierarchical relationship

between A and B, or that they do not affect the target gene

(Table 1). We can distinguish between two types of parallelism.

Model 4, the two-gene additive model with no interaction,

represents no epistasis. Model 3 represents buffering epistasis, in

which both genes act on the target in the same direction, and the

effect of deleting either is not apparent unless both genes are

deleted. We refer to this as nonhierarchical epistasis since neither

gene is upstream of the other. Deleting a deactivated regulator

gene has no effect on the target gene, making it impossible to

identify a biological relationship when regulators are deactivated.

The remainder of Table 1 represents cases in which one or both

genes do not affect the target gene. Expression traits supporting

Model 8 (no significant terms) may represent target genes that do

not lie downstream of A or B, and are uninformative. The result is

one-to-many relationships between best-fit regression Models 1, 2,

and 8 and their corresponding gene expression models. If the

upstream gene of a hierarchical pair is turned off, we cannot know

whether it is upstream or uninvolved.

Typically, expression is measured from thousands of genes

simultaneously and we do not expect them all to be informative.

Even with clear interpretations for each trait individually, there is

a challenge interpreting all traits together. We examine the

distribution of all traits. Among informative traits associated with a

best-fit model, the majority may represent the underlying

biological relationship between the deleted genes.

Validating the Two-Step Modeling Framework
Van Driessche et al. used Dictyostellium discoideum wild type [20]

and deletion mutant strains [21] to infer hierarchical epistasis

among genes of the protein kinase (PKA) pathway. Each strain’s

gene expression profile was measured using cDNA microarrays

with a common reference over 24 hours. These data are well

suited for testing our methods for two reasons. First, the epistatic

relationships between the deleted genes already have been

characterized experimentally. Secondly, the mutant strains are

genetically identical at all loci except the few being studied, i.e.

there is no variation in their genetic background.

The PKA pathway is associated with the developmental

aggregation response to nutrient deprivation, which initiated

midway through the time course. Data before and after

aggregation were considered separately so we can clearly interpret

the deletion effects in each signal state. The data represented fold-

change on a logarithmic scale, which made the distribution of

expression measurements approximately normal; we consider the

implications of this in the discussion. We studied 1553 expression

traits. The genes we used were measured in both experiments and

differentially expressed in the wild type during aggregation [20].

Five deletion strains target genes of the protein kinase A (PKA)

pathway that is involved in the response to starvation and activates

aggregation. This provided three contrasts: pufA/pkaC, pufA/yakA,

and regA/pkaR. Although there are ten possible contrasts for these

five genes, only these three double mutants were generated,

presumably because these are known direct relationships.

For each contrast, some traits supported each model (Figure 2).

Additionally, large number of traits showed no deletion effects (i.e.

support Model 8). At a significance threshold of p,0.01, a

majority of traits supported Model 8 for every contrast pre-

aggregation (Figure S4) and for the regA/pkaR contrast post-

aggregation. According to our interpretive models, Model 8 can

indicate three possibilities. The first two are hierarchical

relationships in which an upstream enhancing gene is turned off

during aggregation. The last possibility is that the genes are

Table 1. Correspondence Between Regression Models and
Biological Models.

a. Hierarchical Relationships

A upstream of B B upstream of A

Upstream Gene ON OFF ON OFF

Repressor m+bA+bI [5] m+bB [2] m+bB+bI [6] m+bA [1]

Enhancer m+bA+bB+bI

[7]
m [8] m+bA+bB+bI [7] m [8]

b. Non-hierarchical Relationships

State of A/B ON/ON ON/OFF OFF/ON OFF/OFF

Enhancer/
Enhancer

m+bI [3] m+bA [1] m+bB [2] m [8]

Enhancer/
Repressor

m+bA+bB [4]

Or

Repressor/
Enhancer

Repressor/
Repressor

m+bI [3]

a. Six of the eight possible regression models represent hierarchical
relationships between genes. If the upstream gene is a repressor we can
identify gene order and the signal effect. If the upstream gene is an enhancer,
we can identify only the signal effect. If the signal turns off an upstream
enhancer, deleting either gene will have no effect. b. Non-hierarchical
relationships can be distinguished if both genes are activated by the signal.
Model 3 suggests buffering, while Model 4 suggests independent effects, i.e. no
epistasis. If a potential regulator is turned off by the signal it has no effect on
the target gene.
doi:10.1371/journal.pgen.1000029.t001

Figure 2. Post-Aggregation Distribution of Best-Fit Models at
p,0.01 Significance Threshold. The frequency distribution of best-
fit regression models can be interpreted as hierarchical relationships
between genes. Model 8 corresponds to no deletion effects and is
supported by a large number of traits in each contrast; these genes are
likely not downstream of the deletions. The model supported by the
majority of remaining traits is assumed to represent the true
relationship.
doi:10.1371/journal.pgen.1000029.g002
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uninvolved in the expression of the target and the deletions have

no effect.

Since not all target genes are downstream of the PKA pathway,

it is logical that the deletions have no effect on these genes.

Similarly, the PKA pathway is invoked during aggregation and it

follows that the deletions may affect expression only after

aggregation has begun. We assume that the target genes

supporting Model 8 are not downstream of the pathway, and

that the majority of the remaining target genes reflect the

relationship within the pathway. To test this assumption, we

looked at the overlap between the expression traits supporting

Model 8 for each contrast. We found that all of the expression

traits supporting Model 8 for the pufA/yakA contrast also supported

Model 8 for the other two contrasts. These traits strongly support

the assumption that they are not downstream of the PKA

pathway.

When we looked at these genes for both the pufA/pkaC and

pufA/yakA contrasts, there was strong support for one model over

all others post-aggregation. Not only did these models explain

more traits post-aggregation, but the models also fit better. On

average, the best-fit model explained over half of the expression

variation (R2$0.5, adjusted for degrees of freedom in the model)

for traits in the pufA/pkaC and pufA/yakA contrasts, and for both

contrasts the R2 increased post-aggregation (t-test with p,0.0001).

For the pufA/pkaC contrast, Model 2 had the most support of the

seven non-null models. Model 2 corresponds to two possible

interpretations. The first is that pkaC is the downstream gene, that

pufA is a repressor, and that the pufA is turned off in the presence of

the aggregation signal. Alternately, we could interpret it to mean

that only pkaC has an effect on the downstream targets and that

pufA is unrelated. For the pufA/yakA contrast, Model 6 had the

most support among non-null models. This model has a one-to-

one correspondence to our interpretive models. It asserts that yakA

is an upstream repressor of pufA, and that yakA is turned on at

aggregation. These conclusions both agree with what has been

determined previously about the roles these three genes play

during development [22]. YakA represses pufA, which then ceases

to repress pkaC.

The regA/pkaR was problematic because almost all traits

supported Model 8, the model with no effect terms. For the

previous two cases, we assumed that these traits were not

downstream of the pathway. Given this assumption, we could

have concluded that regA and pkaR were not involved with

aggregation. However, the other two contrasts had 435 and 528

traits supporting Model 8, while regA/pkaR has 1497. Because of

this discrepancy, we suggest that some proportion of these genes

support the hierarchical model corresponding to Model 8: that one

gene is an enhancer of the other and is deactivated by aggregation.

According to previously published results, regA and pkaR work

together to repress pkaC pre-aggregation and are in fact

deactivated post-aggregation [23]. This is consistent with the

potential hierarchical relationship.

Because we are modeling nonadditive interactions, the loga-

rithmic scale transformation on these data can potentially alter the

results relative to untransformed data [3,24]. To test this, we

exponentiated the data and repeated our method. Despite

dramatic changes to the shape of the data distribution, the

resulting distribution of best-fit models agreed with the results

presented above. Again, a majority of traits showed no deletion

effects (i.e. support Model 8). Model 2 had the most support for the

pufA/pkaC contrast, Model 6 had the most support for the pufA/

yakA contrast, and Model 8 had near complete support for the

regA/pkaR contrast using the post-aggregation data (Figure S5).

Interestingly, this does not imply that each trait supports the same

model regardless of the scale transformation. In fact, only 57%

and 47% of traits support the same model with the untransformed

data for the pufA/pkaC contrast and pufA/yakA contrast respective-

ly. However, in both these cases the vast majority of changed traits

support Model 8. This result amends our previous interpretation

of the traits supporting Model 8; in addition to genes not

downstream of the pathway, there may be some proportion of

genes for which expression changes due to deletion is not

detectable due to issues of scale. Fewer traits supported Model 8

using transformed data, suggesting that these data may be more

informative using the logarithmic transformation.

Thus, in all three cases our best-fit regression models

correspond to a set of interpretative models that includes the true

relationship between the genes. Certain regression models have a

one-to-many relationship with the interpretive models, but in these

cases the number of candidate interpretive models is reduced to a

few. Only one interpretation corresponds to Model 6, which

makes the pufA/yakA contrast straightforward to describe. In

evaluating pufA/pkaC, Model 2 corresponds to one hierarchical

model and one single-gene model. Since the pufA/yakA contrast

provides evidence that deleting pufA has an effect, the hierarchical

model is a preferable interpretation to the pkaC only model. As we

vary the significance threshold for model selection, our results are

robust. The best-fit model among models 1–7 was the same for p-

value thresholds from 0.05 to 0.001 (Figure S6). As the selection

criterion becomes stricter we reject more effects as not significant,

and more traits support Model 8.

Discussion

Measuring transcript abundance within a cell will remain a

fundamental interest to biologists. Gene expression technologies

have become popular over the past decade because of their ability

to capture many genes simultaneously. Analyses that traditionally

focused on a few genes now must be expanded to consider entire

genomes. At this scale, the relationships between genes are of as

much interest as the genes’ individual effects. Many methods exist

to infer gene networks or pathways from expression profiles [25].

Most of these require large datasets and result in large network

diagrams that are difficult to interpret. These approaches are

useful because they provide a genome scale view of transcription,

and they are convenient because they can be applied to data from

a variety of easily accessible sources.

However, there is a continuing need for experiments that allow

us to infer pathways directly. The classical epistasis experiment we

recount in our results [21] is one such approach. Because it targets

gene pairs directly, we can build pathways a relationship at a time.

This local approach results in pathway diagrams that are easily

comprehended and biologically relevant. Additionally, it associates

genetic variation with expression variation. For these reasons,

these types of experiments will be increasingly useful in

constructing biological systems diagrams. While there are

currently few experiments that measure expression in a genetically

variable population, their number is increasing rapidly. Our

motivation is to provide a conceptual framework in which these

and related experiments can be interpreted. We have addressed

the simplest genetically variable data structure for identifying

epistasis, in which individuals vary at only two loci, but our ideas

can be applied to a range of similar data.

Because expression data are continuous by nature, we must

address them with quantitative methods. Regression analysis is a

standard technique to relate continuous variables. Using a multiple

regression model to estimate gene effects and interactions has

several advantages. First, it allows us to consider information from

Modeling Epistasis
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all the deletion mutants and the wild type simultaneously.

Additionally, it estimates an effect for each allele, allows for

variance in allelic effects, and separates these effects from error

variance. In a traditional epistasis analysis the double mutant is

compared to each single mutant in a rule-based manner, and the

two nearest trait values determine epistasis. In contrast to our

method, this method does not take advantage of all the

information from a given contrast, and it is difficult to distinguish

signal from noise. Myriad sophisticated techniques exist for fitting

multiple regression models, and these should be employed based

on the distributional properties of particular data.

We consider individual expression traits rather than an

expression profile. A gene expression model represents each trait,

but we must infer the correct biological model through the results

from the regression step. A corresponding regression model

represents each possible gene expression model, but these

relationships are not always one-to-one. Hierarchies in which an

upstream gene is turned off by a signal are confounded with cases

in which the gene has no effect. It makes sense that we cannot

observe the effect of a deletion if the gene is already turned off in

the wild type. Nonetheless, our framework was consistent with

previous characterizations of the pathway in every case.

Scale transformations are common in genetics and genomics so

that data meet statistical testing assumptions such as normality and

homoscadasity [3]. Logarithmic transformations are ubiquitous in

the literature for gene expression data such as that presented in

our results. However, models with nonadditive interactions are

subject to the scale of the data, and transformations can result in

support for alternative models. This is a long-standing problem

with describing epistasis for complex traits [24]. Often it is difficult

to know the most biologically appropriate scale, and the scale is

instead often chosen arbitrarily based on the available measure-

ment or statistical convenience. For gene expression traits the scale

issue is even more complex. Since there are wide differences in the

range of expression variation between genes, it is likely that no one

scale will allow detection of the underlying biological interactions

for all expression traits. The relationship between scale and

epistasis is an area that demands further study, particularly in this

era of genetics on biomolecular traits such as gene expression that

have not been well studied in this context.

When we performed the same analysis on log-transformed and

untransformed post-aggregation data, about half the traits

supported a different best-fit model, yet the distribution of results

led to the same conclusions regarding the underlying relationship

between the deleted genes. This suggests our conclusions may be

robust to scale effects that would affect single traits because they

are based on the distribution of all traits. Those traits that are

affected by scale trend toward having no detectable deletion effects

with untransformed data. This further confounds the roughly one-

third of traits supporting Model 8, which may also suggest an

upstream enhancer or a trait truly unaffected by the deletions.

While we do not discount scale effects, we assume most of these

traits fit the last category because of the high percentage of these

traits, the consistency of traits supporting Model 8 between

contrasts, and the logic that deletions should affect only

downstream genes. Whichever the case, these concerns make a

strong argument for interpreting the distribution of results across

expression traits. This contrasts with methods that consider all

traits as an expression profile. These assume the profile as a whole

supports one underlying pathway [21].

Using our method, it is straightforward to interpret a range of

experiments. The alleles being studied do not need to be null

alleles, e.g. deletions. The same method could be applied to over-

expressed genes, or any polymorphic locus. Additionally, the

method can accommodate experiments investigating multiple loci

and higher order interactions. Three-way and four-way epistasis

models follow from the same principles as the two-way models we

present. The regression model is very flexible and easy to extend

by adding a parameter for each locus plus interaction terms.

Connecting these statistical models to biological models follows the

same process we have illustrated. The strengths of our approach

are particularly apparent in multi-locus models because we

provide a means for estimating effects using the entire population

of mutants simultaneously. The number of genotypes increases by

a power of two for each additional gene included in the

experiment; with a three-locus experiment having eight genotypes.

As the number of necessary pair-wise comparisons increases, they

will contain more undetected error and become more difficult to

interpret. Environmental effects can also be included in the model

at the expense of increased complexity in interpretation. We

considered observations before aggregation and after aggregation

separately in our example for simplicity.

By proceeding to add genetic and environmental complexity, it

is apparent how the classical epistasis framework connects to the

quantitative genetic paradigm. An additional benefit of our

method is that it enables comparisons between any population-

based expression analyses. Whether study populations consist of

deletion mutants, experimentally designed crosses, inbred lines,

chromosome substitution strains, or natural populations, each

expression trait is the same. For this reason, comparing these

results is highly desirable. Estimating the allelic effects and

interactions for each expression trait allows direct comparison

across a variety of genetic backgrounds. By embracing a common

interpretive framework to a range of experiments that use gene

expression as a trait, we can integrate results and form clearer

insights into the genetic control of systems.

Materials and Methods

Dictyostellium Gene Expression Data
We used data originally presented by Van Driessche et al. We

use data from Dictyostellium discoideum wild type [20] and eight

deletion mutant strains (pufA2, pkaC2, pufA2pkaC2, yakA2,

pufA2yakA2, regA2, pkaR2, regA2pkaR2) [21]. They measured each

strain’s gene expression profile over a time course using cDNA

microarrays and a common reference that was pooled from all

time points. Expression was measured thirteen times over 24 hours

and captured the developmental aggregation response to nutrient

deprivation, which initiated midway through the time course. We

grouped observations before (hours 0,2,4,6) and after (hours

14,16,18,20) aggregation. Expression at these time points is highly

correlated ([Figure 2 in 20]) and consistent with the regulatory

changes previously reported. This data pooling increased the

sample size for our regression analysis. Observations during the

transitional period (hours 8,10, and 12) were disregarded, as were

observations in the late stages of development that were less

correlated (hours 22 and 24). The data represented fold-change on

a logarithmic scale. We studied 1553 genes that were measured in

both experiments and differentially expressed in the wild type

during aggregation [20].

Regression Analysis
We fit models in the R statistical environment [26]. Stepwise

backwards selection entails fitting a fully parameterized model,

then eliminating model terms that do not meet a specified

significance threshold. The model is refit with the remaining terms

until no further terms can be dropped.
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Supporting Information

Figure S1 Modeling the Relationship A is an Upstream

Repressor of B, which Represses a Target gene.

Found at: doi:10.1371/journal.pgen.1000029.s001 (0.07 MB TIF)

Figure S2 Modeling the Relationship A is an Upstream

Enhancer of B, which Represses a Target Gene.

Found at: doi:10.1371/journal.pgen.1000029.s002 (0.07 MB TIF)

Figure S3 Modeling the Relationship A is an Upstream

Enhancer of B, which Enhances a Target Gene.

Found at: doi:10.1371/journal.pgen.1000029.s003 (0.07 MB TIF)

Figure S4 Distribution of Best-Fit Models Pre-Aggregation.

Found at: doi:10.1371/journal.pgen.1000029.s004 (3.65 MB TIF)

Figure S5 Distribution of Best-Fit Models Post-Aggregation

(Untransformed Data).

Found at: doi:10.1371/journal.pgen.1000029.s005 (3.61 MB TIF)

Figure S6 Distributions of Best-fit Models at Varying Signifi-

cance Thresholds

Found at: doi:10.1371/journal.pgen.1000029.s006 (0.28 MB

XLS)
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