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Abstract

Significant departures from expected Mendelian inheritance ratios (transmission ratio dis-
tortion, TRD) are frequently observed in both experimental crosses and natural populations.
TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses,
including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we
found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ al-
lele within a 9.3 Mb region (Chr 2 76.9 — 86.2 Mb). A copy humber gain of a 127 kb-long
DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate
for the causative allele. We mapped R2d sequences to two loci within the candidate interval.
R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains
tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in
classical strains (including the mouse reference genome) to more than 30 in wild-derived
strains. Using real-time PCR assays for the copy number, we identified a mutation
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(R2d2VSB!1) that eliminates the majority of the R2d2"V>E copies without apparent alter-
ations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating
for R2d2"VSB%!T the mutation is transmitted to the progeny and Mendelian segregation is re-
stored in females heterozygous for R2d2"VSB%" thus providing direct evidence that the
copy number gain is causal for maternal TRD. We found that transmission ratios in
R2d2"SB heterozygous females vary between Mendelian segregation and complete distor-
tion depending on the genetic background, and that TRD is under genetic control of un-
linked distorter loci. Although the R2d2SE transmission ratio was inversely correlated with
average litter size, several independent lines of evidence support the contention that female
meiotic drive is the cause of the distortion. We discuss the implications and potential appli-
cations of this novel meiotic drive system.

Author Summary

One of the strongest expectations in genetics is that chromosomes segregate randomly
during meiosis. However, genetic loci that exhibit transmission ratio distortion (TRD) are
sometimes observed in offspring of F1 hybrids. Meiotic drive is a type of non-Mendelian
inheritance in which a “selfish” genetic element exploits asymmetric female meiotic cell di-
vision to promote its preferential inclusion in ova. We previously reported TRD on Chr 2
in the CC, a mouse recombinant inbred panel with contributions from three Mus muscu-
lus subspecies. Here we show that maternal TRD consistent with a novel meiotic drive sys-
tem is caused by a copy number gain. This mutation is similar in size and structure to
other known meiotic drive responders, such as the knobs of maize. A deletion of most of
the copies is sufficient to restore Mendelian segregation, proving that the copy number
variant is causative of the observed TRD. In the CC, and also the related DO population,
the transmission frequency of the favored allele varies dependent on genetic background,
demonstrating that this system is under genetic control. In conclusion, we describe a novel
wild-derived meiotic drive locus on mouse Chr 2 that exploits female meiosis asymmetry
to violate the Laws of Mendelian inheritance.

Introduction

Mendel’s Laws provide the theoretical foundation of transmission genetics and explain many
of the inheritance patterns of biological traits in sexually reproducing organisms. The Laws
state that each gamete receives a random collection of alleles—exactly one per pair of homolo-
gous loci—and that gametes unite at random. However, reports of exceptions to Mendelian in-
heritance date back almost to the rediscovery of Mendel’s Laws, and have been instrumental in
elucidating the mechanisms of genetic inheritance [1-4]. Transmission ratio distortion (TRD)
is defined as a significant and reproducible violation of the inheritance ratios expected under
Mendel’s Laws [1,5-7].

Most observations of TRD are due to selection acting upon the products of meiosis (gamete
selection) or fertilization (differential pre- or post-natal survival) [5-8]. The latter is a relatively
common occurrence in experimental crosses in many types of organisms including plants and
animals [8,9], and is routinely used to classify the essentiality of genes and alleles [9-14]. How-
ever, a small but increasing number of observations of TRD can be ascribed to the differential
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segregation of alleles during meiosis, a process called meiotic drive [1,10-14]. To qualify as
such, meiotic drive systems must exhibit three characteristics: 1) asymmetry in the meiotic di-
vision(s) with respect to cell fate; 2) functional asymmetry of the meiotic spindle poles; and 3)
functional heterozygosity at a locus that mediates attachment of a chromosome or a chromatid
to the meiotic spindle [1,15,16]. Meiotic drive is an evolutionary force thought to contribute to
karyotypic evolution [15-17] and maintenance of non-essential “B chromosomes” in multiple
clades [17,18]. The incidence of meiotic drive is unknown, but given that it is a relatively strong
evolutionary force that can lead to the rapid fixation of a selfish allele, it should be rare to ob-
serve in action [18-20].

In most plant and animal species meiotic drive is restricted to females, which undergo asym-
metric meiosis. At the locus where TRD is observed, an allele that is subject to preferential seg-
regation is termed a responder [19-21]. There are examples in many species of meiotic drive
responder alleles that, when in heterozygosity, succeed in being transmitted to the functional
product of the asymmetric meiosis more than half of the time (S1 Fig.). Responders in known
meiotic drive systems typically involve multi-megabase, highly repetitive and heterochromatic
sequences, such as the D locus in monkeyflower [11,21], knobs in maize [11,22], homogenously
staining regions (HSRs) in wild mice [12,17,22,23] and centromeres and B chromosomes in
multiple species [12,17,23,24]. Those systems have mostly proven intractable to molecular
characterization, and thus the mechanism(s) by which they gain a segregation advantage are
largely unknown. Meiotic drive may be promoted or suppressed by distorter loci (alternately
referred to in some publications as effectors, modifiers or drivers).

It is rare for TRD at any single locus to be observed in multiple independent genetic back-
grounds. An exception is TRD on mouse Chromosome (Chr) 2, which was reported first in inter-
specific backcrosses between C57BL/6] (a classical inbred strain, primarily of Mus musculus
domesticus origin [24-28]) and SPRET/EI] (a Mus spretus wild-derived inbred strain) [25-28]. In
offspring from two different (C57BL/6]JxSPRET/Ei])xC57BL/6] backcrosses, the SPRET/Ei] allele
was overrepresented across a 40 cM region on Chr 2 [25,28] and a ~140 Mb region on Chr 2 with
a maximum transmission frequency of 0.66 [25,29]. TRD in Chr 2 was also reported in an F2
cross between two body weight selection lines, one of which (high body weight; M16i) was derived
from the Hsd:ICR outbred stock (also known as CD-1) [29,30]. Additionally, in an advanced
intercross between the Hsd:ICR-derived high-running selection line HR8 [30-32] and C57BL/6],
TRD in Chr 2 was present in the primary data but not reported in the corresponding manuscripts
[31-35]. And recently, we reported TRD in Chr 2 in the Collaborative Cross (CC) [33-35]. The
CC is a mouse recombinant inbred panel derived from eight genetically diverse inbred strains: the
classical strains A/J, C57BL/6], 129S1/SvIim]J, NOD/ShiLt] and NZO/HILt] and the wild-derived
strains PWK/Ph] (M. m. musculus origin), CAST/Ei] (M. m. castaneus) and WSB/Ei] (M. m.
domesticus) [35]. We reported TRD in favor of the WSB/Ei] allele across a ~50 Mb region in the
middle of Chr 2 in three largely independent sets of CC lines. In the largest sample, involving
350 genetically independent CC lines, the WSB/Ei] allele was present on 22% of Chr 2 [35,36], a
significant over-representation compared to the expected frequency of 12.5% (1/8).

Here we report our extensive genetic characterization of Chr 2 TRD in the CC and in the
Diversity Outbred (DO), an outbred population initiated from 144 incompletely inbred CC lines
and specifically tailored for high resolution mapping of complex traits [33-36]. Using a combina-
tion of classical genetics, whole genome sequence analysis and bioinformatics, we demonstrate
conclusively that maternal transmission distortion is caused by a large copy number gain of a
127 kb DNA segment containing a single gene, Cwc22. We also provide compelling evidence that
meiotic drive is required to explain the TRD in the progeny of heterozygous dams. Finally, we
show that there exist several genetically determined levels of TRD controlled by unlinked genetic
variation, which, to our knowledge, is unique among meiotic drive systems.
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Results
Extreme TRD in Chr 2 is present in the DO population

To test whether TRD of the WSB/Ei] allele in Chr 2 is present in the DO, we analyzed 1,175 an-
imals from DO generation 8 (G8) that were genotyped using two related genotyping arrays
(MUGA or MegaMUGA, see Materials and Methods). We sampled the genotypes of each indi-
vidual at 1 Mb intervals along Chr 2 and then computed the overall frequencies of the eight
founder alleles at each position. The WSB/Ei] allele was over-represented relative to the other
seven founder alleles across a roughly 100 Mb region in the middle of Chr 2 (S2 Fig.). However,
there was a striking difference in the level of distortion observed in the CC and the DO, with
the WSB/E]] allele frequency reaching a maximum of 0.22 in the CC compared to 0.55 in the
DO. This result indicates that the additional outcrossing in the DO is associated with higher
levels of TRD. We conclude that TRD favoring the WSB/Ei] allele is a general feature of crosses
in the CC genetic background; however, the level of TRD may vary widely depending on the
number of generations of outbreeding.

TRD is exclusive to heterozygous females

To determine the parental origin of the TRD, we analyzed 5,499 offspring from 18 experimen-
tal crosses in which exactly one parent was heterozygous for the WSB/Ei] allele in an interval
spanning the region of maximum distortion on Chr 2 (75-90 Mb) [33-35,37,38]. In all cases
the heterozygous parent was an F1 hybrid derived either from an intercross between the WSB/
EiJ inbred strain and one of eight other inbred strains (the seven founder strains of the CC or
PWD/Ph]J), or from two CC strains, of which one was homozygous for the WSB/Ei]J allele on
Chr 2 and the other was homozygous for a non-WSB/Ei] allele. F1 hybrids were mated to either
C57BL/6] or FVB/NJ mice, and their progenies were euthanized at birth and genotyped using
genetic markers located in the region of maximum distortion. For each cross, we computed the
TR of the WSB/EI] allele and the non-WSB/Ei] allele using the aggregate genotypes across all
litters from parents with identical genotypes (Table 1).

TRs in six paternally segregating crosses (rows 1-6 in Table 1) were as expected under the
null hypothesis of Mendelian segregation (range 0.482-0.524, p > 0.37). In contrast, the mean
TR in maternally segregating crosses (rows 7-18 in Table 1) was 0.666 and deviated significant-
ly from the null hypothesis (p = 3.4x107*%). We conclude that, in the genetic backgrounds test-
ed, TRD in favor of the WSB/Ei] allele on Chr 2 is restricted to the progeny of
heterozygous dams.

The TRs among maternally segregating crosses were significantly different (p = 2.4x10
demonstrating that TRD depends on genetic background (i.e., TRD is under genetic control).
The 12 crosses using F1 hybrid dams can be divided into three classes based on the observed
TR (S3 Fig.). F1 hybrid dams derived from crosses between WSB/Ei] and CAST/EiJ or PWD/
PhJ showed no distortion (crosses 7-10 in Table 1; aggregate TR = 0.485, 95% CI = 0.46-0.51,
p =0.23). Moderate but significant distortion was present in F1 hybrid dams derived from
crosses between WSB/Ei] and A/], 129S1/Svim], NZO/HILt] or NOD/ShiLtJ; and in (CC042/
GeniUncxCC001/Unc)F1 hybrid dams (crosses 11-15 in Table 1; aggregate TR = 0.645, 95%
CI=0.61-0.68, p = 8.3x10""). Finally, extreme distortion was observed in reciprocal (WSB/
EiJxC57BL/6])F1 hybrid dams and in (CC001/UncxCC039/Unc)F1 hybrid dams (crosses 16—
18 in Table 1; aggregate TR = 0.943, 95% CI = 0.93-0.96, p = 9.6x10™"°*). We conclude that het-
erozygosity for the WSB/Ei] allele in the central region of Chr 2 is necessary but not sufficient
to observe TRD, because TR was consistent with Mendelian inheritance in some dams that met
that criterion.

790))

PLOS Genetics | DOI:10.1371/journal.pgen.1004850 February 13,2015 4/29



@’PLOS | GENETICS

R2d2 Causes Transmission Ratio Distortion

Table 1. Transmission ratios in the progeny of R2d2"VSB/m°WSE heterozygous F1 hybrid sires and dams.

Cross Dam Sire Informative parent ~ R2d2VSB  R2d2"°'WSB TR p

1 C57BL/6J (WSBJ/EiJxC57BL/6J)F1  sire 132 136 0.493  8.1x107*
2 C57BL/6J (C57BL/6JXWSB/EIJ)F1  sire 139 128 0.521  5.0x107"
3 FVB/NJ (PWK/PhJXWSB/EiJ)F1  sire 263 283 0482  3.9x107"
4 FVB/NJ (WSB/EiJXPWK/PhJ)F1  sire 188 171 0.524  3.7x107"
5 FVB/NJ (CAST/EIJXWSB/EiJ)F1  sire 110 112 0.496  8.9x107"
6 FVB/NJ (WSB/EiJXxCAST/EiJ)F1  sire 98 99 0.498  9.4x107"
7 (WSB/EiJ/CAST/EiJ)F1 C57BL/6J dam 257 274 0.484  4.6x107"
8 (CAST/EiJxWSB/EiJ)F1 C57BL/6J dam 248 288 0.463  8.4x107%2
9 (PWD/PhJXxWSB/EiJ)F1 C57BL/6J dam 127 142 0.472  8.4x107%2
10 (WSB/EiJxPWD/PhJ)F1 C57BL/6J dam 146 122 0545  3.6x107°
11 (A/JJXWSBJ/EiJ)F1 FVB/NJ dam 58 29 0.67 1.4x107"
12 (NODShiLtJ/JXWSB/EiJ)F1 FVB/NJ dam 135 89 0.6 2.0x107%®
13 (129S1/SvIimJxWSB/EiJ)F1 FVB/NJ dam 184 111 0.62 2.0x107%3
14 (CC042/GeniUncx CC001/Unc)F1  FVB/NJ dam 85 38 0.69 2.0x107%
15 (NZO/HILtJXWSB/EiJ)F1 FVB/NJ dam 130 59 0.69 2.4x107%7
16 (CC001/UncxCC039/Unc)F1 FVB/NJ dam 35 4 0.9 6.9x107%7
17 (WSB/EiJxC57BL/6J)F1 C57BL/6J dam 506 33 0.939  2.9x107%2
18 (C57BL/6JXWSB/EiJ)F1 C57BL/6J dam 512 28 0.948  2.4x107%
Subtotal sire 930 929 0.500 1.0
Subtotal dam 2,423 1,217 0.670  7.0x107%°

doi:10.1371/journal.pgen.1004850.t001

We also conclude that the grandparental origin of the WSB/Ei] allele has no influence on
TRD because the TR levels were not significantly different between three pairs of reciprocal F1
dams (compare crosses 7 and 8,9 and 10 and 17 and 18 in Table 1; p = 0.53,0.11 and 0.59,
respectively).

TRD maps to a 9.3 Mb interval in the middle of mouse Chr 2

To define the boundaries of the locus subject to TRD, we screened 61 CC lines and 378 DO
mice that had been genotyped with MegaMUGA for recombinations involving the WSB/Ei]
haplotype in the 75-90 Mb interval of Chr 2. We identified five DO females (DO-600, DO-681,
DO-732, DO-832 and DO-OCA45) and two CC strains (CC039/Unc and CC042/GeniUnc)
that each had at least one informative recombination (Fig. 1). Next, we mated four of the DO
females (all except DO-OCAA45 that was already heterozygous) and the two CC strains to one
of two additional CC lines (CC001/Unc and CC005/TauUnc) that had no contribution from
WSB/Ei] on Chr 2, to obtain heterozygous G1 hybrid females. Each hybrid female was geno-
typed with MegaMUGA and mated to FVB/NJ males (total of 35 crosses; S1 Table).

We found that dams carrying eight of the ten recombinant chromosomes exhibited signifi-
cant TRD in the Chr 2 interval (TR range 0.69-1.0, p < 2.1x107>; Fig. 1 A), but dams carrying
two other recombinant chromosomes did not (TR = 0.48 and 0.37, p > 0.72; Fig. 1 B). These re-
sults are consistent with our conclusion that heterozygosity on Chr 2 is required but not suffi-
cient for TRD; therefore, dams with Mendelian transmission ratios were not used for mapping
the locus subject to TRD. Dams with TRD in favor of the WSB/Ei] allele were all heterozygous
for a 9.3 Mb interval (the candidate interval; boxed in Fig. 1 A). The proximal boundary of the
candidate interval is defined by the recombination found in the CC strain CC039/Unc (i.e., the
most distal SNP inconsistent with a WSB/Ei] haplotype). The distal boundary of the candidate
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Haplotype found in:

Dam R2d2%s5  R2d2%wss TR p R2d2 cis trans
A (DO-600XCCO05/Taulnc)G1-A 26 0 1.00  1.5x10° =
(DO-600xCC005/TauUnc)G1-B 37 4 090 5.1x10° =
(DO-732xCC005/TauUnc)G1-A 60 2 097 4.2x10% =
(DO-732xCC005/TauUnc)G1-B 20 1 095 1.0x10° =
(CC001/UncxCC039/Unc)G1 35 4 090 1.7x107 O
(DO-832xCC001/Unc)G1-A 89 10 090 2.2x107 ]
(DO-832xCC001/Unc)G1-B 41 5 089 2.2x10° O
(CC042/GeniUnexCC001/Unc)G1 85 38 069  1.4x10° =[]
B  (po-ssixccootiunc)ct 49 54 048 072 Ol
DO-OCA45 16 27 037 097 ]

o AJ W NZO/HILtJ
m C57BL/6J m CAST/EJ
@ 12981/SvimJ ® PWK/PhJ
B NOD/ShiLty @ WSB/EJ

I 1 I 1
70 80 90 100 110 120 130

Position (Mb)

Figure 1. R2d maps to a 9.3 Mb candidate interval. CC and DO mice were crossed to generate G1 dams, which were then crossed to FVB/NJ sires to
determine the TR in their progeny. Each G1 dam carries a chromosome that is recombinant for the WSB/EiJ haplotype (shown under the heading cis) and a
non-WSB/EiJ chromosome (the haplotype on the homologue is shown at far right under the heading trans). Dams with the same diplotype in the central
region of Chr 2 were grouped together to define ten unique diplotypes. The aggregate number of WSB/EiJ and non-WSB/EiJ alleles transmitted by dams of
each diplotype are shown for dams A) with TRD and B) without TRD. Significance of TR deviation from Mendelian expectation of 0.5 was computed using
one-sided binomial exact test (p-value). The contribution from the eight founders of the CC and DO are shown in different colors. Thick purple bars indicate
the extent of WSB/EiJ contributions, and thin bars indicate the extent of contributions from all other strains. The black box indicates the boundaries of the R2d
candidate interval as determined by the region thatis WSB/EiJ in all dams with TRD.

doi:10.1371/journal.pgen.1004850.g001

interval is defined by the recombination found in DO-732 and DO-832 females (i.e., the most
proximal SNP inconsistent with a WSB/Ei] haplotype). Those SNPs define the maximum
boundaries of the locus subject to TRD, Chr 2 76,860,362-86,117,205 (all positions from
NCBI/37 unless otherwise noted).

A multi-megabase copy number gain is associated with TRD on Chr 2

Among the eight CC founder strains, the candidate interval has 5,018 SNPs, 1,286 small inser-
tions/deletions and 35 structural variants that are private to the WSB/Ei] strain [37-39]. Al-
though this very large number of variants would typically make it difficult to confidently
identify and prioritize candidates, one large structural variant has several unique features that
made it a strong candidate causative allele for the TRD phenotype. That structural variant is a
copy number gain of a 127 kb-long genomic DNA segment (herein referred as R2d for re-
sponder to drive). In the reference genome, R2d is composed of nine non-contiguous sections
that, in total, span 158 kb (see R2d1 locus; Chr 2 77,707,014-77,865,265; Fig. 2 A; S2 Table).
We used the normalized per-base read depth from whole-genome sequence alignments gen-
erated by the Sanger Mouse Genomes Project [31,32,37,39] and the HR8 selection line to esti-
mate the number of copies of R2d in 18 inbred strains (see Materials and Methods). Similar to
C57BL/6], 15 of the 18 strains, including 5 additional CC founder strains (A/], 129S1/Svim],
NOD/ShiLt], NZO/HILt] and PWK/PhJ) were copy number one (i.e., a single haploid copy),
and CAST/Ei] was copy number two. In contrast, WSB/Ei] had an estimated copy number of
34, and SPRET/Ei] had an estimated copy number of 36, resulting in ~4.4 Mb of additional
DNA in those strains (Fig. 2 A). We sequenced 10 individuals from the HR8 selection line (for
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Figure 2. A large copy number gain is present in strains with maternal TRD. A) Read depth in 100 bp windows, normalized by the genome-wide mean
read depth for each strain, for R2d7, a 158 kb region within the 9.3 Mb candidate interval defined in Fig. 1. R2d1 includes a single (non-contiguous) copy of
R2d. Strains are represented by the colors shown in the inset. Inbred strains included under the heading “classical” are A/J, 129S1/SvimJ, C57BL/6JN, NOD/
ShiLtJ and NZO/HILtJ. The four large gaps represent LINEs that were inserted in the unique copy found in the reference genome after initial duplication. B)
R2d copy number estimated by TagMan assays for Cwc22. Normalized cycle threshold (ACy; see Methods) is proportional to absolute copy number on the
log scale. Strains are colored as in panel A. The (M16ixL6)F2 samples shown are known to be homozygous for the M16i allele based on genotypes from the
MegaMUGA array. C-F) The yellow boxes highlight the 158 kb region depicted in panel A (R2d7) and the 900 kb R2d2 locus mapping interval. Vertical
dashed lines indicate the boundaries of the 9.3 Mb candidate interval. C) Locations of Ensembl genes in the NCBI/37 reference genome within the interval.
The locations of the Cwc22 gene and of seven Cwc22 pseudogenes (Gm13695), are shown. D) Recombination frequency based on Liu et al. (2014),
normalized by physical distance (Mb) and log10-transformed. The red line indicates the mean recombination frequency for Chr 2. E) Frequency distribution
measured in 1 kb windows of SNPs with shared alleles among the three strains with TRD (WSB/EiJ, SPRET/EiJ and HR8; gray line), and with alleles
perfectly consistent between strains with TRD and strains without TRD (A/J, 129S1/SvimJ, C57BL/6JN, NOD/ShiLtJ, NZO/HILt, CAST/EiJ and PWK/PhJ;
red line). Lines are smoothed. Black circles indicate windows in which the strains with TRD share an allele for at least 90% of SNPs. F) Frequency distribution
of reported SNPs in the candidate interval. G) The location and the number of copies of R2d that are present in R2d7 and R2d2.

doi:10.1371/journal.pgen.1004850.9002

which Chr 2 TRD was also observed when mated to C57BL/6] [31,32,40]) to a total depth of
125x and aligned the reads to the reference genome. All 10 individuals had evidence of a copy
number gain with the same boundaries as in WSB/Ei] and SPRET/E]] (Fig. 2 A; mean copy
number 24.5 +/- 1.4, equating to ~3 Mb of additional DNA).

We used two additional methods to assay the copy number of R2d. First, we identified sets
of probes on two different genotyping arrays for which the sum hybridization intensity was
highly correlated with the copy numbers estimated from sequencing read depth (34 probes in
MDA and 3 probes in MegaMUGA; S3 and S4 Tables, respectively). Second, we used real-time
quantitative PCR to estimate the R2d copy number (Fig. 2 B) using TagMan assays internal to
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exons of the single protein-coding gene within R2d, Cwc22 (Fig. 2 C). Using that gene as a
proxy for the copy number gain, we found that the copy number estimates from all three meth-
ods were highly concordant for the 28 sequenced strains/individuals.

Using the TagMan assay, we also found that the M16i inbred strain has a high number of
copies of R2d (Fig. 2 B). We conclude that a large increase (> 20-fold) in R2d copy number is
found exclusively in strains with TRD (WSB/Ei], SPRET/EiJ, HR8 and M16i) and that TRD
consistently favors the transmission of the allele with the copy number gain.

The copy number gain maps ~6 MB distal to R2d1

Many structural variants identified from whole-genome sequencing reads have uncertain geno-
mic positions due to the challenge of mapping large variants that are absent from the reference
genome. To determine the position of the copy number gain associated with R2d, we mapped
the WSB/Ei] and CAST/Ei] alleles using segregating populations that have been genotyped at
medium (MegaMUGA) or high (Mouse Diversity Array, MDA) density [26,40]. In the CC
founder strains, probes located in R2d have hybridization intensities correlated with the num-
ber of copies estimated from aligned read depth and TagMan CNV assays (Fig. 2 A, B). The
MDA provides robust discrimination between the reference (one copy), CAST/EiJ (two copies)
and WSB/Ei] alleles (34 copies; Fig. 3 A). MegaMUGA is able to identify mice carrying the
WSB/EI] allele with little ambiguity (Fig. 3 B). Using the sum intensities of the informative
probes as a quantitative trait, we mapped the WSB/Ei] and CAST/Ei] copy number gains in
two independent populations and platforms. A genome scan identified a single, broad, highly
significant peak on Chr 2 in each population, and those peaks overlap with each other and with
the initial candidate interval for TRD (Fig. 3 C-E). We conclude that the copy number gain is
closely linked to R2d1. This location is consistent with the large copy number gain being the
causative allele. Note that both genome scans (Fig. 3 C, D) demonstrate that all the extra R2d
copies found in WSB/Ei] are located in this interval because no other significant peak is ob-
served in either scan. QTL mapping using TagMan readout as the phenotype confirmed this
result (Fig. 3 D, E).

Analysis of individual mice with recombinant chromosomes in the candidate interval re-
vealed that the copy number gain maps to a 900 kb interval (the R2d2 locus; Chr 2 83,631,096
84,541,308; Fig. 2; Fig. 3 A, B). Specifically, the CAST/EiJ copy number gain (R2d2“*S”; one ad-
ditional copy of R2d) is located distal to the transition from the CAST/Ei] to the NZO/HILt]
haplotypes found in mice OR3172m10 and OR3172f9 because both mice have low hybridiza-
tion intensity consistent with a single copy, hence they lack R2d2““*" (Fig. 3 A; S4A Fig.). Simi-
larly, the WSB/Ei] copy number gain (R2d2"*%; 33 additional copies of R2d) is located
proximal to the transition from the WSB/Ei] to the CAST/Ei] haplotype found on DO mouse
DP2-446, because it had high hybridization intensity consistent with the presence of R2d2"*"
(Fig. 3 B; S4B Fig.). These results demonstrate that R2d2 is not located immediately adjacent to
R2d1 but approximately 6 Mb distal to it. The distal location of the copy number gain is con-
firmed by the analysis of the sum intensity of the three MegaMUGA probes that track R2d in
two backcrosses involving the SPRET/E]] inbred strain [26,41] (S4C Fig.).

Loss of R2d copies at R2d2 restores Mendelian transmission of Chr 2

We used the TagMan assay to confirm R2d copy number in all heterozygous females tested for
TRD (S1 Table; S5 Fig.). We identified a dam (DO-G13-44) that was homozygous for the
WSB/EI] haplotype across the entire candidate interval but produced offspring that were segre-
gating for the copy number gain (Fig. 4 A). This was confirmed by estimating R2d copy num-
ber in each of 27 G3 females and 16 G4 progeny that were heterozygous for a WSB/Ei]
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Figure 3. Linkage mapping localizes R2d2 to a 900 kb region in Chr 2. A) Distribution of sum-intensity for the 34 probes in R2d present on the Mouse
Diversity Array (MDA) for mice with a non-recombinant CAST/EiJ haplotype (green), a non-recombinant WSB/EiJ haplotype (purple) and non-CAST/EiJ/non-
WSBV/EiJ haplotypes (grey) is shown at the top of the panel. The sum intensity and recombinant haplotypes in six mice defining the boundaries of copy-
number gain in the CAST/EiJ strain are shown below. B) Distribution of sum-intensity across three probes in R2d on the MegaMUGA array for mice with non-
recombinant CAST/EiJ haplotype (green), a non-recombinant WSB/EiJ haplotype (purple) and non-CAST/EiJ/non-WSB/EiJ haplotypes (grey) is shown at
the top of the panel. The sum intensity and recombinant haplotypes in six mice defining the boundaries of copy-number gain in the WSB/EiJ strain are shown
below. C) QTL scan for the R2d2 copy number gain using MDA sum-intensity as the phenotype in 330 CC G2:F4 mice. D) QTL scan for the R2d2 copy
number gain using MegaMUGA sum-intensity as the phenotype in 96 (FVB/NJx(WSB/EiJxPWK/PhJ)F1)G2 offspring. E) Superposition of LOD curves from
panels (C) and (D) on chromosome 2. The R2d2 candidate interval is shaded in yellow.

doi:10.1371/journal.pgen.1004850.9003

haplotype (Fig. 4 B; S5 Fig.). We determined the TR in 825 progeny of G3 dams mated to FVB/
NJ sires. The TRs among the 27 G3 dams were significantly different (p = 4.9x107'?). In the
progeny of the 15 G3 dams with high copy number there was significant TRD in favor of the
WSB/Ei] allele (TR = 0.78, p = 2x10~°% Fig. 4 C). In contrast, we found absence of TRD in the
12 G3 dams that inherited the low-copy allele (TR = 0.53, p = 0.234). A genome scan for TRD
as a binary trait demonstrated that presence or absence of TRD in this pedigree maps uniquely
to the candidate interval (Fig. 4 D, E).

We were also able to estimate that G3 dams with the low-copy allele had a copy number of
~11. We conclude that the loss of ~22 copies of R2d was sufficient to rescue Mendelian trans-
mission, thus demonstrating that the copy number gain is causative of TRD.
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Figure 4. Mapping the causal locus for maternal TRD in a family segregating for a copy-number variant at R2d2. A) Pedigree of DO-G13-44xCC
cross. Female DO-G13-44, mother of the G3 dams phenotyped for TR, is segregating for a copy-number variant at R2d2. G3 dams inheriting the maternal
WSB/EiJ haplotype associated with the high-copy allele (R2d2"VE) are colored black; those inheriting the WSB/EiJ haplotype associated with the low-copy
allele (R2d2V58%'") are colored red. Genotypes at marker chr2:85.65Mbp is denoted -/- (homozygous non-WSB), +/- (heterozygous WSB/EiJ) or +/+
(homozygous WSB/EiJ). AC;, normalized cycle threshold by TagMan qPCR assay; TR, transmission ratio, denoted as count of progeny inheriting a WSB/EiJ
allele: count of progeny not inheriting a WSB allele; the paternal haplotype at chr2:83.6 Mb as determined by genotypes from the MegaMUGA array using the
standard CC abbreviations is shown, A = A/J, E = NZO/HILtJ, ? = haplotype unknown. B) Distribution of AC; values among 27 G3 dams. Points are colored
as in panel A. C) TR among 27 G3 dams partitioned according to copy-number (CN) haplotype at R2d2. Points are colored as in panel A. D) QTL scan for
TRD, treated as a binary phenotype, in 25 G3 dams genotyped with MegaMUGA. Only the maternal signal from Chr 2 is shown. Grey dashed line indicates
threshold for significance at a = 0.01 obtained by unrestricted permutation. Candidate interval for R2d is shaded yellow. E) Empirical cumulative distribution
of both maternal and paternal LOD scores genome-wide, with a = 0.01 significance threshold indicated by grey dashed line.

doi:10.1371/journal.pgen.1004850.g004

Meiotic drive is the most likely cause of maternal TRD at R2d2

The results presented above demonstrate that TRD at R2d2 is only observed in the progeny of
heterozygous dams. This restricts the plausible causes of TRD to meiotic drive, genotype-de-
pendent embryonic lethality (including genotype-dependent competition between embryos) or
a combination of both. To identify the cause of TRD, we first determined whether TR levels
(S6 Fig.; S1 Table) were correlated with litter size in 127 DO dams (these 56 DO-G13 and 71
DO-G16 females are a random sample from an outbred population). We observed a strong in-
verse correlation between average litter size and TR at R2d2 (r = -0.65, p = 7.2x10 ® and r =
-0.40, p = 5x10~* in the DO-G13 and DO-G16 dams, respectively; Fig. 5 A, B). We conclude
that the presence and the strength of TRD are significantly associated with reduced litter sizes
and thus with some type of embryonic lethality. We determined the relationship between TRD
and litter size under the assumption of TRD caused exclusively by embryonic lethality [40,41]
(S7 Fig.). Under this scenario, in both the DO-G13 and DO-G16 samples the observed average
litter size is significantly greater than predicted based on TR (p = 0.021 and 6.0x10"° for DO-
G13 and DO-G16 dams, respectively; S7 Fig.). We conclude that embryonic death alone could
only account for a fraction of the “missing” progeny inheriting a non-WSB/EiJ (R2d2""""*F)
allele. We determined directly the levels of embryonic lethality in DO-G13 dams at mid-gesta-
tion (see Materials and Methods). We observed that dams with TRD had slightly, but not sig-
nificantly, higher numbers of resorbed embryos present in utero than did dams with
Mendelian segregation (1.3 + 1.5 and 1.1 + 1.2 resorbed embryos, respectively, p = 0.66; N = 29
and 19 dams, respectively; S8 Fig.). We conclude that embryonic lethality alone is insufficient
to explain TRD at R2d2.

Although embryonic lethality can change the proportion of progeny inheriting alternative
alleles at R2d2, only meiotic drive can lead to an increase in the absolute number of progeny in-
heriting the R242"" allele per litter in dams with TRD compared to dams with Mendelian seg-
regation. To test whether meiotic drive was responsible for TRD, we determined the average
absolute number of offspring per litter that inherited the R2d2"*? and R2d2"°"""® alleles in
the progenies of the DO-G13 and DO-G16 DO dams with either TRD or Mendelian
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Figure 5. TRD at R2d2 requires the combined action of meiotic drive and embryonic lethality. Relationship between maternal TR and average litter
size (top panels) and average number of offspring inheriting alternative alleles at R2d2 (bottom panels) for A) DO G13 dams, B) DO G16 dams, C) G3 dams
in the D0-G13—44 pedigree and D) (NZO/HILtJxXWSB/EiJ)F1 dams. Top panels: gray circles are dams without TRD (A, B, D) or having the low-copy allele (C);
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offspring of dams with TRD in F1 hybrid dams than in DO without TRD.

doi:10.1371/journal.pgen.1004850.g005

segregation. In dams with Mendelian segregation, the average numbers of offspring per litter
that inherited either allele were not different (3.80 R2d2"*" versus 3.96 R2d2""""*E p = 0.73 in
DO-G13 dams; 4.13 R2d2""*® versus 4.03 R2d2™°""5, p = 0.29 in DO-G16 dams; Fig. 5 A, B). In
contrast, in the progenies of dams with TRD the average number of offspring per litter that in-
herited the R2d2"2 allele (4.51 and 4.89 in the DO-G13 and DO-G16 dams, respectively) was
significantly greater than the absolute number of either allele in the offspring of dams without
distortion (p = 0.006 and 0.049 for the R2d2"" and R2d2""""*" alleles in DO-G13; p = 0.005
and 4x10~* for the R2d2"? and R2d2™°""5E alleles in DO-G16; Fig. 5 A, B). The same result
holds true for live embryos at mid-gestation: the average numbers of offspring that inherited
R2d2"°" and R2d2N°""*? alleles were 5.0 + 2.2 and 1.6 + 1.8 for dams with TRD versus 4.3 +
1.6 and 3.4 + 1.8 for dams without TRD. Based on the consistent and significant excess average
absolute number of R2d2"E alleles in the litters of dams with TRD, we conclude again that
meiotic drive is required to explain TRD at R2d2.

Further support for meiotic drive was provided by the analysis of the DO-G13-44 pedigree
(Fig. 5 C) and crosses between (NZO/HILt]JxWSB/Ei])F1 dams and FVB/N]J sires (cross 15 in
Table 1; Fig. 5 D). The average litter size of DO-G13-44 G3 dams inheriting the mutant
R2d2"%® allele (R2d2"5B%!") was larger than in dams inheriting the standard R2d2"" allele
(9.4 £2.9 and 6.8 + 1.6, respectively), but the observed average litter size in dams with TRD is
significantly greater than predicted based on TR (p = 0.02; S7 Fig.). Similarly, in the (NZO/
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HILtJxWSB/Ei])F1 crosses the average litter size (7.7 + 2.4; Fig. 5 D) was comparable to DO-
G13 and DO-G16 dams without TRD, and was greater than predicted based on TR (p = 0.09;
Fig. 5). There was little direct evidence of embryonic lethality at mid-gestation (1.8 + 1.6 and
0.4 + 0.5 resorbed embryos, respectively; S8 Fig.). Furthermore, DO-G13-44 G3 dams with dif-
ferent R2d2 alleles differed significantly in the average absolute number of offspring per litter
inheriting the R2d2"5E allele (in dams with TRD) compared to the R2d2"SB4! qllele (in dams
with Mendelian segregation; 5.3 + 2.0 and 4.64 + 2.4, respectively, p = 0.07; Fig. 5 C). Similar re-
sults are observed when comparing the absolute number of offspring per litter that inherited
the R2d2"2 allele in the (NZO/HILtJxWSB/EiJ)F1 crosses to the DO dams without TRD (5.1
+ 1.0 and 4.1 + 1.1, respectively, p = 0.03; Fig. 5 D). In summary, all data from four independent
experimental populations were consistent with an explanation of Chr 2 TRD that requires the
joint presence meiotic drive and low-level embryonic lethality.

Discussion

A large copy number variant causes maternal TRD and reduces the
average litter size in heterozygous dams

After demonstrating that TRD occurs only through the germline of F1 female mice, we were
faced with two major obstacles in our efforts to map the causative locus. First, although hetero-
zygosity for the WSB/Ei] allele is required, it is not sufficient for meiotic drive (Table 1; S1
Table). Therefore, we initially mapped the responder by determining the minimum region of
overlap for the WSB/Ei] haplotype only in dams with TRD (Fig. 1). This yielded a 9.3 Mb can-
didate interval. Second, the candidate interval spans a recombination-cold region [37,40,42],
and the frequency of recombination is three-fold lower than expected in the CC (Fig. 2 D). Al-
though this likely contributes to the overall deficit in recombinant chromosomes (none ob-
served versus an expected 23 in the 378 DO females and 4 in 61 CC lines), the complete lack of
recombinants involving the WSB/Ei] haplotype is striking, and, for the purposes of this study,
a major impediment to the precise mapping the responder.

Within the candidate interval, a single variant (R2d2) stands out as the most likely cause of
TRD. R2d2 consists of one or more copies of a 127 kb sequence (R2d). High copy number (> 24)
is present in all four strains with reported TRD and low copy number (< 2) is present in all eight
strains without TRD (Fig. 2 A, C). The expansion in copy number leads to an increase of at least
3 Mb in DNA content within the allele favored by maternal TRD. Among CC founders, only
WSB/E] has a high copy number allele.

As the reference genome is based on a single classical inbred strain, C57BL/6], copy number
gains in other strains or wild mice may be located in a different physical location. Fortunately,
the presence of a third allele in CAST/EiJ (which exhibited a twofold enrichment of sequencing
reads) combined with the fact that recombinations involving the CAST/Ei] haplotype are not
suppressed within the 9.3 Mb candidate interval, enabled us to map the physical location of
R2d2 to a 900 kb region located 6 Mb distal to R2d1, the locus where the sequencing reads
mapped in the reference genome (Fig. 3). Importantly, the mapping of R2d2 was enabled by
the availability of deep sequence data for each of the strains used in our experiments [25-
27,37,42,43 and this study] and by combining the results of experiments completed 20 years
apart [25-27,43,44].

We determined the number and spatial distribution of SNPs in the 9.3 Mb candidate inter-
val that partition the ten inbred strains with whole genome sequence in a pattern consistent
with the TRD phenotype (three strains with TRD: WSB/EiJ, SPRET/Ei] and HRS8; and seven
strains without TRD: A/J, C57BL6/J, 129S1/SvIim], NOD/ShiLt], NZO/HILt], CAST/EiJ and
PWK/PhJ). Compared to a genome-wide mean of 1 consistent SNP every ~3.2 kb, within the
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900 kb region where we mapped R2d2 there was a mean of 1 consistent SNP every 883 bp (p <
1.0x10™*, one-sided Student’s ¢-test; Fig. 2 E). This reduction in diversity is not due to undercal-
ling of SNPs in the R2d2 candidate interval (Fig. 2 F). The fact that consistent SNPs are rare in
most of the genome but are common within the 900 Kb region in which R2d2 maps supports
the hypothesis that R2d2 is the causative allele for TRD.

Most importantly, we identified a DO female (DO-G13-44) that was homozygous for the
WSB/EI] haplotype across the entire R2d candidate interval but was heterozygous for R242 al-
leles with different copy numbers (Fig. 4). We generated a three-generation pedigree and ana-
lyzed the R2d copy number, the Chr 2 haplotype and TR in the progeny of heterozygous dams
with different copy numbers. This analysis revealed perfect correlations between the inheri-
tance of R2d2"5%!" and complete absence of TRD in favor of the WSB/Ei] allele, and between
the inheritance of R2d2"*? and presence of TRD. This experiment demonstrates that the re-
duction in copy number from 33 to 11 is sufficient to restore Mendelian segregation, and that
R2d2 is the causative allele for maternal TRD.

Further evidence that TRD requires an R2d2 allele with copy number of above 11 is provid-
ed by the NU/J inbred strain. This strain has intermediate copy number (7, estimated by Taq-
Man) but no TRD in the progeny of (NU/JxC57BL/6])F1 female hybrids (0.55, p = 0.55; S12
Fig.).

Gene content and sequence composition of R2d

The presence of R2d sequences at two distinct locations (Fig. 2 G) indicates an initial duplica-
tion of this segment in the ancestor of CAST/Eij, WSB/Ei], SPRET/Ei] and Hsd:ICR. R2d spans
a highly expressed protein coding gene (Cwc22; Fig. 2 C) that is implicated in RNA splicing
[38,44], a predicted gene of unknown function that overlaps with the last exon of Cwc22
(Gm13727) and a pseudogene (Gm13726). DNA copy number variation for Cwc22 has been
described previously [38,45]. Cwc22 is highly expressed in mouse oocytes and fertilized eggs
[45,46]. The Cwc22 gene is a known eQTL in mouse: allele-specific RNA-seq of brain tissue
from reciprocal crosses between WSB/Ei], PWK/PhJ and CAST/Ei] showed extreme differen-
tial expression, with the WSB/Ei] allele more highly expressed than the other two [46,47].

Apart from its size and repetitive nature, an important feature of the R2d2 locus is its re-
markable uniformity between three divergent genetic backgrounds that are separated by ~1
million years of evolution: WSB/EiJ, SPRET/Ei] and HR8 [47-49]. For example in WSB/EiJ
and SPRET/EiJ the genome-wide mean is 1 SNP every ~60 bp [37] and the mean SNP frequen-
cy within R2d is significantly reduced to 1 SNP every 1,342 bp (t-test, p = 3.9x107°%). Further
analysis will be required to determine the respective ages of the duplication and the copy num-
ber change(s), and whether interspecific introgression [48-51] is required to explain the un-
likely degree of sequence conservation between M. m. domesticus and M. spretus.

We note that, while unlikely given the results of our QTL mapping (Fig. 3), it is possible that
there have been additional duplication events that have also inserted R2d in other chromo-
somes. Additionally, the causal allele may incorporate additional DNA sequences, including
some that may be absent in the reference genome (similar to the origin of the sequence on
maize chromosome Ab10 that causes meiotic drive in that species). If that is the case, the causal
allele may be much larger than 4.4 Mb. For example, HSR alleles as large as 200 Mb have been
described [50-52].

How do meiotic drive and embryonic lethality contribute to TRD at R2d?

A second focus of our study was to discriminate among the many mechanisms [29,52] that
could give rise to TRD at R2d2, and to rule out as many as possible. First, the fact that TRD is
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only observed through the maternal germline rules out both spermatogenesis-mediated pro-
cesses and sperm competition. Second, the presence of TRD at birth rules out differential sur-
vival of offspring. Third, the fact that distortion was independent of the maternal granddam
precludes cytoplasmic effects. The remaining plausible explanations are differential fertilization
based on the oocyte genotype, embryonic lethality and/or meiotic drive. The first two mecha-
nisms should reduce the average litter size proportionally to TR (black line in S7 Fig.), while
the average absolute number of offspring inheriting the favored genotype (R2d2"°) per litter
remains constant. The number of resorbed embryos observed in pregnant females could distin-
guish the two mechanisms because it should be greater in the second than in the first scenario.
In contrast, if meiotic drive is solely responsible for TRD then the following should be true: 1)
average litter size is independent of TRD, 2) the average absolute number of offspring inherit-
ing the favored genotype (R2d2"?) per litter is higher in dams with TRD than in dams with
Mendelian segregation, and 3) the level of embryonic lethality is independent of the presence
and level of distortion. The data shown in the Results section are most consistent with the com-
bined action of embryonic lethality and meiotic drive. Specifically, meiotic drive is required to
explain both the fact that the observed average litter size in the DO-G13 and DO-G16 dams, in
the DO-G13-44 pedigree and in the (NZO/HILtJxWSB/Ei])F1 dams is greater than predicted
based on TR (S7 Fig.), and that the average absolute number of offspring inheriting the
R2d2"5® genotype per litter is greater in dams with TRD (Fig. 5). Note that some p-values in
comparisons involving (NZO/HILtJxWSB/Ei])F1 crosses failed to reach statistical significance
due to the small sample size, but the trends were always consistent with those in DO dams with
TRD.

An alternative explanation that does not involve meiotic drive would require the combined
presence of increased ovulation in dams with TRD and pre- or post-implantation genotype-de-
pendent competition between embryos favoring the allele with the high copy number at R2d2.
Genotyping at R2d2 and re-analysis of 159 F2 females from the M16ixL6 intercross [29] con-
firms an overdominant effect of the R2d2 genotype in the number of live and dead embryos at
day 16 of gestation, as predicted under the meiotic drive and embryo competition scenarios,
but shows no effect of the R2d2 locus on ovulation rates (S9 Fig.). This result is not due to a
lack of power, as we have 80% power (at a = 0.5) to detect a difference in the mean ovulation
rate du to an effect of the R2d2 genotype and QTLs for ovulation rate were identified in the
original study [29,53-55]. In summary, the effect of the R2d2 genotype on reproductive pheno-
types is most consistent with the meiotic drive hypothesis. However, the possibility remains
that the genotype-associated difference in number of live embryos may be due to differential
fertilization or implantation. Additional breeding experiments and genotyping of pre-implan-
tation embryos will resolve the remaining questions concerning the mechanisms involved in
TRD at R2d2.

It is interesting to speculate about the types of embryonic lethality that are consistent with
our data and with previous reports of TRD on Chr 2. Lethality is associated with distortion at
R2d2, and thus the simplest explanation is preferential death of embryos inheriting maternal
R2d2N°""SE alleles. However, such a scenario would require parent-of-origin-dependent death
of embryos with maternal C57BL/6], 129S1/Svim], NOD/ShiLt] and NZO/HILt] R2d2 alleles
in crosses involving F1 females (Table 1) and CAST/Ei], PWK/PhJ and A/] R2d2 alleles in the
CC/DO females (S10 Fig.). The lack of evidence of TRD and parent-of-origin lethality in doz-
ens of crosses involving these alleles [53-55], combined with the lack of evidence for imprinted
genes in the central region of Chr 2 [2-4,46,56], appears to rule out this explanation. Specifical-
ly, the Cwc22 gene present in R2d is not imprinted in brain, kidney, lung and liver in crosses in-
volving the WSB/Ei], PWK/PhJ and CAST/Ei] strains [46]. A more likely explanation for the
joint and correlated presence of meiotic drive and lethality is that the unequal segregation of
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chromosomes and/or chromatids that leads to TRD in euploid embryos may also lead to in-
creased Chr 2 aneuploidy, and thus to embryonic death (all autosomal aneuploidy is embryon-
ic-lethal in the mouse). This would also explain the slight increase in the number of resorbed
embryos observed at mid-gestation (S8 Fig,; S1 Table). This hypothesis makes the testable pre-
diction that Chr 2 should be especially affected by aneuploidy in some dams with TRD.
Importantly, co-segregation of a deletion allele of R2d2 and increased litter size in the DO-
G13-44 pedigree demonstrates that lethality is mediated by an element within the R2d repeat.

Maternal TRD at R2d is an oligogenic trait

Opverall, we assessed TR at R2d2 in hundreds of females carrying a single WSB/Ei] allele in at
least nine distinct genetic backgrounds (Table 1; S1 Table). The presence of significantly differ-
ent TR levels among F1 hybrid dams, combined with the fact that we observe both extreme
TRD and no distortion in the progeny of females with A/J, C57BL/6], 129S1/Svim], NOD/
ShiLt], CAST/Ei] and PWK/Ph] alleles in trans at R2d2 (S10 Fig.), demonstrates that TRD is
under genetic control of at least one additional locus (i.e., there is at least one unlinked distorter
locus that is genetically variable in the CC and DO mice). Furthermore, the presence of at least
two significantly different levels of distortion among F1 hybrid dams (Table 1; S3 Fig.) indi-
cates either that more than one distorter locus is involved or that an allelic series exists at a sin-
gle distorter locus.

Further evidence that TRD is under control of one or more unlinked distorters was provided
by 15 female DO-G13-44 G1 offspring that inherited the high-copy allele. Those dams had sig-
nificantly different levels of TRD (p = 9.8x107°). Note that there was no correlation between
the presence or level of TRD and the paternally inherited allele (one-way ANOVA, F =2.21 on
1 and 23 df, p = 0.15; Fig. 3).

In the DO-G13-44 pedigree, females that inherited the R2d2"*%%!! alele had copy number
11 (S11 Fig.), indicating a partial rather than complete deletion of the expansion. Using the
TagMan assay, we identified two additional DO females (DO-G13-49 and DO-G16-107; S4
Fig,; S11 Fig.) that had results consistent with a copy number loss in the WSB/Ei] haplotype.
The presence of the deletion in the respective germlines was confirmed by the TagMan assay in
their progenies (54 Fig.). Importantly, each one of the three deletions appears to be indepen-
dent because these females are not closely related, their WSB/Ei] haplotypes in Chr 2 are differ-
ent and the copy number present in each female is also different (S12 Fig.). The deletions
appear to be internal to R2d2 based on the analysis of the MegaMUGA genotypes and intensi-
ties [57] at all surrounding markers. The repeated observation of independent deletions indi-
cates that R2d2 is rather unstable and may explain the fact that, despite its presence in
laboratory strains and wild mice, it has not led (yet) to a complete selective sweep.

Known meiotic drive systems (S1 Fig.) consist of one or more responder loci (a locus subject
to preferential segregation during meiosis) and a single distorter (the effector locus required for
drive at the responder). In meiotic drive systems that are stable in natural populations, re-
sponder and distorter loci are tightly linked and are typically protected from decoupling by fac-
tors that inhibit recombination, such as structural variation [7,11,14]. Although R2d2 resides
within a recombination-cold region, the distorter is not closely linked to R2d2 based on the TR
observed and the diplotypes present in F1 hybrid and DO dams (Fig. 1; S8 Fig.). Therefore, at
least one unlinked distorter is required to explain the observed variability in TRD.

These observations indicate that the maternal TRD phenotype has a complex genetic archi-
tecture. Specifically, a minimum number of copies of R2d are required in heterozygosity at
R2d2 for TRD to be observed. Therefore, it can be classified as overdominant, restricted to the
female germline and caused by structural variation. Similar characteristics have been recently
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reported for the Xce locus that controls X-inactivation choice; notably, characterization of Xce
relied on the analysis of a genetically diverse set of F1 hybrid mice [58]. In addition, multiple al-
leles at unlinked loci interact to determine whether distortion occurs at R2d2, and to what ex-
tent. This is unique among meiotic drive systems (S1 Fig.) and has important implications for
the natural history of the system and for the ease of genetic dissection. We hypothesize that
variation in TR levels at R2d2 results from the interaction of alleles originating from multiple
taxa, and thus the use of inter-specifc and inter-subspecific mouse populations was key to the
characterization of this system. Wild-derived strains and wild-caught mice have enabled im-
portant biological discoveries [4,59], and we echo previous encouragements of a more promi-
nent role for these resources in biological and biomedical research [60,61].

What is the mechanism by which R2d2"VSB influences its own
segregation?

Centromeres (i.e., the site of kinetochore formation) are remarkable loci that control, in cis,
proper segregation of chromosomes during mitosis and meiosis. It is easy to envision how a re-
sponder at, or tightly linked to, a centromere can influence chromosome segregation. Recent
evidence shows that kinetochore protein levels and microtubule binding are positively correlat-
ed with preferential segregation to the oocyte in mice that are heterozygous for Robertsonian
fusions [62], indicating that differences in centromere “strength” lead to meiotic drive. Re-
sponders located far away from centromeres are thought to influence their own segregation in
cis by becoming “neocentromeres” and taking advantage of the inherited functional polarity of
the female meiotic spindle [63]. We hypothesize that R2d2 may act as a neocentromere after
epigenetic activation mediated by C57BL/6], NZO/ShiLt], 129S1/SvIm], and NOD/HILL] alleles
at the distorter(s).

The discovery of multiple R2d2 alleles with different copy numbers demonstrates that the
presence of the distal insertion of R2d is not sufficient for meiotic drive; rather, some minimum
copy number (> 11) is required for TRD. This raises the possibility that meiotic drive at R2d2
is dosage-dependent, such that fine-scale control over the level of TRD is possible by adjusting
the number of copies of R2d. If R2d2 is acting as a neocentromere, this may also indicate that
some minimum size and/or number of repeats is required for recognition and activation by the
epigenetic machinery. The Ab10 system of maize provides examples of responders that func-
tion as neocentromeres and for which the level of meiotic drive depends on the size of the re-
sponder (i.e., knob size) [11].

The effect on the Chr 2 centromere of activating an ectopic neocentromere at R2d2 is un-
known, but it might explain the moderate levels of lethality caused by aneuploidy and suggests
that some coordination between the two loci is required to achieve chromosome segregation.
Meiosis involving chromosomes with neocentromeres may lead to an increased rate of non-
disjunction and a reduced rate of recombination.

Implications of R2d2 for the CC and DO

The conclusion that a genetically complex meiotic drive system is responsible for TRD favoring
the WSB/E]] allele at R2d2 is fully consistent with the initial observations of TRD in the CC,
with our prediction that positive selection of the WSB/Ei] allele occurred during outcrossing or
in early inbreeding generations [35], with the presence of similar levels of TRD in extinct and
extant CC lines at intermediate generations of the CC (S5 Table) and with the fact that C57BL/
6], 129S1/Svlim]J, NOD/ShiLt] and NZO/HILt] haplotypes at R2d2 are not underrepresented
among the currently completed CC strains (http://csbio.unc.edu/CCstatus/index.py). The
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observed levels of TRD in crosses that use DO females are consistent with presence of different
alleles at the distorter(s) (S7 Fig.; S1 Table).

Although the discovery and identification of TRD that emerged from the DO pseudo-ran-
domized mating scheme offered the opportunity to characterize a novel meiotic drive respond-
er, the existence of such a locus could negatively impact the utility of this population for
genetic studies. Fortunately, the locus was discovered before complete fixation of the R2d2"?
allele. Although the candidate interval spans 900 kb, TRD affects a much larger region in the
DO because the strength of selection in favor of the WSB/Ei] allele is outpacing the rate at
which recombination can degrade linkage disequilibrium in the region. Ultimately, this region
would become an actual or statistical ‘blind-spot’ in the DO, such that the non-WSB/Ei] allele
frequencies would become too small to detect allelic effects on phenotypic variation. Efforts are
underway to purge the WSB/Ei] allele from the DO breeding population at this locus or to se-
lect for mice carrying a WSB/Ei] haplotype with a low copy number for R2d2, rather than
allow the region to become fixed. Using marker-assisted selection, progeny of heterozygous
WSB/EI] carrier crosses are excluded from subsequent generations. Allele frequencies and ran-
dom segregation on all other chromosomes are being preserved (EJC unpublished).

Concluding remarks

The SPRET/Ei] and WSB/EI] strains and the Hsd:ICR outbred stocks are among the most ex-
tensively characterized and utilized mouse populations. Resources involving those populations
include whole-genome sequencing and genotyping [24,37], development of linkage maps of
the mouse [40,64,65], creation of genetic reference populations [35,36,66], experimental
crosses to map a diverse collection of biomedical and evolutionary traits [33,48,53,61] and se-
lection lines derived from Hsd:ICR (such as M16i and HR) that have been widely used for ge-
netic analyses [30-32,67-69]. The potential for distorted allele frequencies in crosses involving
those populations may affect the interpretation of results from a wide range of genetic, behav-
ioral and physiological studies.

The R2d2 system has attributes that make its genetic and mechanistic characterization a
tractable problem. Identification of several distorters would allow assembling the pathway(s)
responsible for centromere function and spindle polarity. This may open the way to explore at
the molecular and mechanistic levels an evolutionary force (meiotic drive) thought to be re-
sponsible for karyotype evolution in mammals and in many other organisms [15]. With the ad-
vent of genome engineering tools such as CRISPR/Cas9 [70], we also anticipate practical
applications of a strong, modulable meiotic drive system with only modest levels of lethality.
For example, meiotic drive could be used to increase the efficacy of gene drives for introducing
new genes into experimental or natural populations [71].

Materials and Methods
Ethics statement

All animal work was performed according to one of the following protocols: 1) the Guide for
the Care and Use of Laboratory Animals under approved IACUC animal use protocols within
the AAALAC accredited program at the University of North Carolina at Chapel Hill (Animal
Welfare Assurance Number: A-3410-01); 2) the requirements of The Jackson Laboratory Ani-
mal Ethics Committees under approved protocol #/) AX10001; 3) an animal protocol approved
by the North Carolina State University Institutional Animal Care and Use Committee (09-
0133-B); or 4) an animal study protocol approved by the NCI Animal Care and Use Committee
(ASP# LCBG-013). All animals were euthanized according to the regulations of the

governing protocol.

PLOS Genetics | DOI:10.1371/journal.pgen.1004850 February 13,2015 17/29



@’PLOS | GENETICS

R2d2 Causes Transmission Ratio Distortion

Published mouse crosses

The G2:F1 population has been previously reported and was genotyped on the Mouse Diversity
Array [72] (MDA). A population of 96 (FVB/NJx(WSB/EiJxPWK/PhJ)F1)G2 mice was previ-
ously reported and was genotyped on the MegaMUGA array [40,53]. DNAs from selected
progeny from previously published (C57BL/6JxSPRET/Ei])xC57BL/6] and (A/JxSPRET/EiJ)
xA/] backcrosses [26,43] were regenotyped on the MegaMUGA array. The SPRET/EI]J strain
designation had not yet been assigned to the inbred strain at the time the backcross was per-
formed [26]. Finally, DNA from multiple samples from the (M16ixL6)F2 intercrosses and
from generations 4 and 10 of the (HR8xC57BL/6]) advanced intercross line [29,31,32] were
genotyped at markers closely linked to R2d2.

New mouse crosses

Crosses 1-2, 7-10 and 16-17 (Table 1). WSB/Ei] and C57BL/6] were used in reciprocal com-
binations. Male F1 hybrids were backcrossed to C57BL/6] to produce the progeny of crosses 1
and 2. Female F1 hybrids were backcrossed to C57BL/6] to produce the progeny of crosses 16
and 17. The progeny of crosses 7-10 was produced in a similar way to crosses 16 and 17, except
that female F1 of reciprocal matings of WSB/Ei] and CAST/Ei] were used for crosses 7 and 8,
and female F1 of reciprocal matings of WSB/Ei] and PWD/Ph] were used for crosses 9 and 10.
All breeding was done at the Jackson Laboratory (Bar Harbor, ME).

All other crosses. DO mice and standard mouse inbred strains (129S1/SvIim], A/J, C57BL/
6], CAST/EiJ, FVB/NJ, NU/J, NOD/ShiLt], NZO/H1Lt], PWK/PhJ and WSB/Ei]) were ob-
tained from The Jackson Laboratory (Bar Harbor, ME). CC mice were obtained from the Sys-
tems Genetics Core Facility colony at UNC Chapel Hill [73] (http://csbio.unc.edu/CCstatus/
index.py). Those mice were used to generate the following number and types of hybrid mice:
nine (129S1/SvImJxWSB/Ei])F1 females; two (A/JxWSB/Ei])F1 females; seven (NOD/
ShiLtJxWSB/Ei])F1 females; six (NZO/HILtJxWSB/Ei]J)F1 females; 10 (CC042/Gen-
iUncxCC001/Unc)F1 females; three (CC001/UncxCC039/Unc)F1; nine (DOxCC001/Unc)F1
females, 13 (DOxCC005/Tau Unc)F1 females and five (NU/JxC57BL/6]). F1 females were
mated to FVB/NJ males and cages were surveyed three to five times per week. Litter sizes were
recorded and pups were sacrificed at birth, and tissue was collected for DNA isolation. The
same breeding schema was followed with 127 DO R2d heterozygous females used to determine
the origin of maternal TRD. All breeding was done at UNC Chapel Hill (Chapel Hill, NC).

Linkage mapping of TRD in DO-G13-44xCC cross

A single G13 DO female (DO-G13-44) was mated to a male that was the result of an intercross
between four CC lines (CC013/GeniUnc, CC053/Unc, CC065/Unc and CC008Geni/Unc;
Fig. 4). G3 female progeny were weaned, single housed and mated to FVB/NJ males. Cages
were surveyed three to five times per week. Litter sizes were recorded and G4 pups were sacri-
ficed at birth, and tissue was collected for DNA isolation.

TR was measured in G3 dams as described above. Each dam was classified as having TRD
(p < 0.05 for 1-df X2 test of null hypothesis TR = 0.5) or not having TRD (p > 0.05). Both G2
parents and G3 dams were genotyped on MegaMUGA and phased haplotypes at R2d2 were in-
ferred by manual inspection of haplotype reconstructions. In order to isolate the contribution
of maternal and paternal alleles to TRD, MegaMUGA markers called as H in the G2 dam and
homozygous in the G2 sire were retained for mapping, and presence of TRD was mapped as a
binary phenotype using a logistic regression analog to the Haley-Knott method. The procedure
was repeated using only markers called as H in the father of the G3 dams and homozygous in
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the mother. Significance thresholds for LOD scores were obtained by
unrestricted permutation.

DNA isolation and genotyping

Crosses 1-2, 7-10 and 16-17 (Table 1). DNA was prepared from spleens of 21-day old mice.
DNA extraction and SNP genotyping were carried out as described previously [74].

All other samples. DNA for PCR-based genotyping was performed on crude whole genomic
DNA extracted by heating tissue in 100ul of 25mM NaOH/0.2mM EDTA at 95°C for 60 minutes
followed by the addition of 100ul of 40mM Tris-HCl. The samples were then spun at 2000 rpm
for 10 minutes and the supernatant collected for use as PCR template. All primers (56 Table) used
in this study were designed using PrimerQuest software (https://www.idtdna.com/Primerquest).
PCR reactions contained 1.5-2 mM MgCl2, 0.2-0.25 mM dNTPs, 0.2-1.8 uM of each primer and
0.5-1 units of GoTaq polymerase (Promega) in a final volume of 10-50 pL. Cycling conditions
were 95°C, 2 min, 35 cycles at 95°, 55° and 72°C for 30 sec each, with a final extension at 72°C,

7 min. PCR products were loaded into a 2% agarose gel and run at 200 V for 40-120 minutes
(depending on the marker). Genotypes were scored and recorded.

DNA for MegaMUGA genotyping was isolated as described previously [40,53]. Briefly, ~2
mm of mouse tail (5 mg) was harvested, flash-frozen on dry ice and digested with proteinase K
overnight at 65°C. The following day, DNA was extracted using the QTAGEN Puregene Gentra
kit (kit no. 158389; QIAGEN GmbH, Hilden Germany). Genotyping was performed with the
MegaMUGA genotyping microarray (Neogen/GeneSeek, Lincoln, NE), a 78,000-probe array
based on the Illumina Infinium platform.

Genotyping by TagMan. After R2d2 was established as the causal variant for TRD, a subset
of DO-G16 progeny and all (M16i x L6)F2 intercross progeny were genotyped using TagMan
real-time PCR assays for Cwc22. Samples heterozygous for a high-copy allele at R2d2 can be
readily distinguished from samples homozygous for a low-copy allele based on the normalized
cycle threshold value estimated from the assay (see section “Copy-number validation” below).

Statistics

Deviation from Mendelian transmission. TR is reported as the ratio of the WSB/Ei] genotype
to the total number of genotypes: WSB / (WSB + nonWSB). P values for aggregate data were
calculated using a X” goodness-of-fit test of the observed number of WSB/Ei] genotypes com-
pared to the number of WSB/Ei] genotypes expected under the null hypothesis of equal trans-
mission:

( WSB — WSB+;onWSB) 2

WSB+nonWSB
2

X2 =

For individual dams, the small sample sizes (typically fewer than 50 total offspring) would
lead to type II error; therefore, p-values were calculated using an exact binomial test. Confi-
dence intervals for TRs were calculated using the binom R package (http://cran.r-project.org/
web/packages/binom/).

Average litter size. Average litter size was calculated as the mean number of offspring
counted soon after birth per litter per dam (+ standard deviation), including the number of via-
ble embryos counted in utero in mid-gestation DO dams (unless otherwise noted).

PLOS Genetics | DOI:10.1371/journal.pgen.1004850 February 13,2015 19/29


https://www.idtdna.com/Primerquest
http://cran.r-project.org/web/packages/binom/
http://cran.r-project.org/web/packages/binom/

@’PLOS | GENETICS

R2d2 Causes Transmission Ratio Distortion

The expected average litter size (ALS) of a dam under a model in which lethality is the sole
explanation for TRD is:

2TR — 1
ALS,, = ALS,, (1~

2TR

where ALSg,, is the mean ALS in dams with no TRD [41]. Significance of the deviation of
ALSps from ALSg,, was determined using a Wilcox signed rank test.

Inheritance of R2d2 alleles. Similarly, the average absolute number of offspring inheriting
each R2d2 allele was calculated as the mean number of offspring per litter per dam having each
of the possible genotypes. Significance was determined using a one-tailed Student #-test.

Estimation of embryonic lethality

DO and F1 dams were euthanized by CO, asphyxiation 12-18 days after delivery of the previ-
ous litter and the uterus was dissected. The number of live embryos and reabsorbed (dead) em-
bryos was recorded. Each live embryo was dissected to isolate DNA for genotyping. Tissue
from each live embryo was harvested for DNA extraction and genotyping.

Analysis of genotyping arrays

All MDA arrays were genotyped using MouseDivGeno [57], and all MegaMUGA arrays were
genotyped using Illumina BeadStudio. We plotted number of H and N calls (as a fraction of the
total number of genotypes) for each group of similar samples and excluded outliers from fur-
ther analysis. For CC lines, DO animals, CCxCC F1 females and DOxCC F1 females, we in-
ferred haplotypes using probabilistic methods [40,75]. As an additional QC step, we grouped
DO samples by generation and plotted the number of recombinations (counted as unique tran-
sitions in haplotype reconstructions) and removed outliers.

Linkage mapping of R2d2

CAST/Ej] allele in the CC G2:F1. Thirty-four MDA SNP probe sets were identified within
R2d in the GRCm38 reference sequence (S3 Table). We ensured that these probes were unique
using BLAT [76] to map them to the reference genome. In order to map the expansion allele
present in the CAST/Ei] strain, phenotypes and genotypes were coded as follows. First, we ap-
plied a CCS transform [77] to the mean intensity of all probes in each probe set using Mouse-
DivGeno [57] and summed the values for each sample to obtain the final phenotype value.
Next, the genome was divided into a set of disjoint intervals whose boundaries were defined by
the 21,933 unique recombination events inferred in the population [40], so that no individual
would be recombinant within any of the resulting intervals. Then, using haplotype reconstruc-
tions, individuals were coded as either heterozygous (CAST/not-CAST) or homozygous (not-
CAST/not-CAST) within each interval (there are no CAST homozygous individuals in this
population). Of 474 individuals, 144 with a WSB/Ei]J allele in the middle of chromosome 2
were excluded to yield a final sample size of 330. A single-locus QTL scan was then performed
via Haley-Knott regression [78], treating the population as a backcross.

WSB/Ei] allele in an intercross population. Three MegaMUGA SNP probes were identi-
fied within R2d in the GRCm38 reference (S4 Table). Again, uniqueness was verified using
BLAT. In order to map the expansion allele in WSB/Ei], the sum intensity of these probes was
used as a phenotype and genotypes were coded as follows. First the genome was divided into a
grid of 1,000 disjoint intervals of approximately equal size, and one MegaMUGA SNP marker
segregating between WSB/Ei] and PWK/Ph] was selected per interval. Individuals were coded
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as heterozygous (WSB/not-WSB) or homozygous (not-WSB/not-WSB) at each marker. A sin-
gle-locus QTL scan was then performed using Haley-Knott regression as implemented in R/qtl
[79], treating the population as a backcross.

Fine-mapping of R2d2

In order to refine the location of R2d2, we identified individual mice with recombinant chro-
mosomes within the candidate interval defined by linkage mapping. These critical recombi-
nants define the proximal and distal boundaries of the refined candidate interval.

CAST/Ei] allele. We partitioned the 330 G2:F1 individuals without a WSB/Ei] allele in the
R2d locus into two groups according to MDA sum-intensity values. From those with sum-in-
tensity consistent with a non-CAST/EiJ expansion allele, we selected the most distal recombi-
nants from CAST/Ei] to another haplotype. From those with sum-intensity consistent with the
CAST/Ei] expansion allele, we selected the most distal recombinant from another haplotype to
CAST/Ei]. Together these recombinants define the proximal boundary of the candidate inter-
val in CAST/Ei]. Similarly, in order to define the distal boundary of the candidate interval, we
selected the most proximal recombinants from CAST/Ei] to another haplotype that still had
sum-intensity consistent with the CAST/Ei] expansion allele.

WSB/E]] allele. The boundaries of the WSB/Ei] candidate interval were mapped in the
same fashion using 229 individuals spanning generations 10 through 14 of the DO, all of which
have been genotyped on MegaMUGA and are recombinant for WSB/Ei] in the initial candidate
interval. We first excluded individuals homozygous for WSB/Ei] over any interval with in the
interval. Then we selected the most distal recombinants from another haplotype to WSB/Ei],
which also had MegaMUGA sum-intensity values consistent with a non-WSB/Ei] expansion
allele. These recombinants define the distal boundary of the candidate interval. We mapped
the proximal boundary similarly.

SPRET/Ei] allele. (C57BL/6]JxSPRET/Ei])xC57BL/6] (n = 12) and (A/JxSPRET/Ei])xA/]
progeny (n = 17) [26,43] genotyped on the MegaMUGA array were used to refine the candi-
date interval for the expansion allele in SPRET/Ei]. Haplotypes in the relevant region of Chr 2
were inferred by manual inspection of genotype calls. Samples were partitioned according to
sum-intensity at the three MegaMUGA SNP probes tracking the expansion allele. Among indi-
viduals with sum-intensity consistent with the expansion allele, the most proximal recombi-
nant from SPRET/E]] to another haplotype defines the distal boundary of the candidate
interval. Likewise the most distal recombinant from a non-SPRET/Ei] haplotype to SPRET/Ei]
defines the proximal boundary of the candidate interval.

Whole-genome sequencing

Ten individuals from the HR8 selection line were selected for whole-genome sequencing. Five
micrograms of high-molecular-weight DNA were used to construct TruSeq Illumina libraries,
using 0.5 pg starting material, with 300- to 400- and 400- to 500-bp fragment sizes. Each library
was sequenced on one lane of an Illumina HiSeq2000 flowcell, as paired-end reads, with 100-
bp read lengths. We aligned the sequences to the University of California at Santa Cruz Mouse
Build mm9. HR8 sequenced reads were aligned to the mouse genome (mm9) using bowtie
2.2.3 [80] with default options. We removed PCR duplicates and filtered low-quality SNPs
using samtools 0.1.19 [81] and Picard 1.88 (http://picard.sourceforge.net/).

Sequence variants and read depth

We retrieved BAM files of aligned reads (Oct 2012 release) from the Sanger Mouse Genomes
Project FTP site (ftp-mouse.sanger.ac.uk). We used the mpileup function of samtools [81] to
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call sequence variants on the HR8 and Sanger BAM files jointly and to output the read depth at
each base. We counted a SNP as private to WSB/EiJ, SPRET/Ei] and the 10 HR8 individuals if
those samples all shared a genotype that was different from the seven other CC founder strains.
We defined the boundaries of the copy number expansion by identifying consecutive 100bp
windows in which the average read depth was at least twice the genome-wide average read
depth. We estimated the number of copies of the expansion as the modal per-base read depth.

Copy number validation

We used commercially-available TagMan assays for Cwc22 to estimate the copy number of
R2d2. We used two copy number assays (Life Technologies catalog numbers Mm00644079_cn,
Mm00053048_cn) to target the number of Cwc22 copies (proximal and distal). We also used
two reference assays (Tfrc, cat. no. 4458366, for target Mm00053048_cn; Tert, cat. no. 4458368,
for target Mm00644079_cn), for genes known to exist in a single haploid copy in the mouse, to
calibrate the amplification curve. Assays were performed according to the manufacturer’s pro-
tocol on an ABI StepOne Plus Real-Time PCR System (Life Technologies, Carlsbad, CA).
Cycle thresholds (Ct) for each assay were determined using the ABI CopyCaller v2.0 software
with default settings. For each target-reference pair, relative cycle threshold (ACt) was
calculated as

__ (reference __ target
AC, =C C

The ACt value is proportional to copy-number of the target gene on the log scale but is sub-
ject to batch effects. In order to account such effects, normalized ACt values for each sample
were calculated as follows. A standard set of control samples (from C57BL/6], WSB/Ei], CAST/
Ei] and (WSB/EiJxC57BL/6])F1 mice), spanning the expected copy-number range for Cwc22,
were included in duplicate or triplicate in every assay batch. A linear mixed model was fit to
raw ACt values for these control samples, with target-reference pair and batch as random ef-
fects, using the Ime4 package (http://lme4.r-forge.r-project.org/) for R (http://www.R-project.
org/). Predicted values (best linear unbiased predictors, BLUPs) from this model capture tech-
nical variation orthogonal to variation due to genotype. BLUPs calculated from control sam-
ples were subtracted from raw ACt values for all samples, and the residual was used as the
normalized ACt for copy-number estimation.

In this manuscript we chose in most cases to present ACt, rather than extrapolated absolute
copy number, because ACt is the natural scale of the data (i.e., the log scale). Constant variance
(with respect to mean) on the log scale grows exponentially on the linear scale so that estimates
of absolute copy number become increasingly uncertain as copy-number grows.

Linkage mapping of Cwc22 TagMan assay

The use of TagMan assays for Cwc22 as a proxy for copy number at R2d2 was validated by
mapping normalized ACt for target Mm00644079_cn as a quantitative phenotype in 64 mem-
bers of the (FVB/NJx(WSB/EiJxPWK/Ph])F1)G2 intercross population described above. The
marker selection and mapping procedure were the same as described above for mapping Mega-
MUGA sum-intensity values.

Availability of data

Chr 2 genotypes and whole-genome sequence that have not been published elsewhere are avail-
able at http://csbio.unc.edu/r2d2.
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Supporting Information

S1 Fig. Overview of known meiotic drive systems. Data for 13 meiotic drive systems are
shown. Each box represents the maximum TR observed in each system. Dotted lines indicate
variability in observed TRs. For each system, the lower panel provides the type of responder
locus; the species in which it was identified; the range of observed TRs; whether distorter loci
are known, and if so how many and whether they are linked to the responder. Meiotic drive of
Om in DDK and an HSR in wild M. m. musculus mice is dependent on the genetic background of
the sperm that fertilize the egg. All images are from wikipedia.org (Creative Commons license).
(TTF)

S2 Fig. The WSB/Ei] allele is significantly overrepresented in the Diversity Outbred (DO) pop-
ulation. Allele frequencies of the eight CC founder alleles in 1,175 individuals from generation
eight of the DO are shown at 1 Mb intervals on Chr 2. The expected frequency of 0.125 is
shown as a dashed line. The boundaries of the R2d candidate interval are shown by the yellow
box, and the boundaries 900 kb interval where copy number expansion has occurred is shown
by the blue box.

(TTF)

S3 Fig. Three distinct classes of transmission ratio (TR) in progeny of F1 hybrid parents. TRs
are shown for all crosses in Table 1 (red circles). Boxplots show the ranges of TRs observed in
four sets of crosses (numbered according to Table 1): heterozygous sires (1-6) and heterozy-
gous dams with no TRD (7-10), intermediate TRD (11-15) and high TRD (16-18). The first
two classes are not different from the Mendelian expectation of 0.5, nor from each other. The
third and fourth classes are significantly different from 0.5, from each other, and from the first
two classes.

(TIF)

$4 Fig. Linkage mapping localizes R2d2 to a 900 kb region in Chr 2. The recombinant haplo-
types and sum intensities A) for 34 MDA probes in 58 mice defining the boundaries of copy-
number gain in the CAST/Ei] strain, and B) 3 MegaMUGA probes in 74 mice defining the
boundaries of copy-number gain in the WSB/Ei] strain. Haplotypes are colored as in the legend
in S2 Fig.. C) Distribution of sum-intensity for the three probes in the R2d2 copy number gain
region present on MegaMUGA for offspring of a (C57BL/6]JxSPRET/Ei])F1xC57BL/6] (BSB)
backcross or a (A/JxSPRET/Ei])F1xA/] (ASA) backcross is shown in the top right panel, and
the sum intensities and recombinant haplotypes in the mice are shown below. Haplotypes are
colored by parental strain: SPRET/Ei] (brown), C57BL/6] (black) or A/J (yellow). The high
sum intensity, associated with a copy number gain, that is present in ASA-74-B localizes R2d2
distal to the location of the unique copy in the reference sequence (gray dotted line).

(PDF)

S5 Fig. R2d2 copy number in dams tested for TR and in their progenies. Normalized AC,, nor-
malized cycle threshold by TagMan qPCR assay (see Methods). A) Homozygous calibration
samples used for TagMan assays targeting Cwc22: C57BL/6] (dark grey), haploid copy number
1; CAST/Ei] (green), copy number 2; (WSB/EiJxC57BL/6])F1 (lavender), copy number ~17;
and WSB/EiJ (purple), copy number ~33. In panels B-H, all samples are predicted to be hetero-
zygous for the R2d2"V*® allele based on genotype by PCR at marker Chr2:85.65Mbp. B) F1
hybrids between inbred CC lines used to define the 9.3 Mb candidate interval (see S1 Table).
C) G1 hybrids between DO females and CC males used to define R2d candidate interval (see S1
Table). D) Heterozygous DO G13 dams. Outlier sample marked in red is female DO-G13-049,
dam of samples in panel G. Sample marked in red and with (x) is female DO-G13-044, the
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dam of samples in panel H. E) Progeny of DO G13 dams according to predicted copy number
(CN), based on TagMan assay of corresponding G13 dam. Red points are progeny of female
DO-G13-049. F) G3 progeny of family DO-G13-44 (see Fig. 3), the offspring of female DO-
G13-044, according to predicted CN based on haplotypes linked to R2d. G) G4 progeny in
family DO-G13-44, according to predicted CN based on TaqMan assay of corresponding G3
dams. Only low-molecular weight (LMW) DNA was available for samples in panels G and I;
note that AC; values obtained from LMW DNA are not directly comparable to AC; values from
high-molecular weight DNA. H) Heterozygous DO-G16 dams. Outlier sample marked in red
is DO-G16-107, dam of samples in panel I. I) Progeny of DO-G16 dams according to predicted
copy number (CN), based on TagMan assay of corresponding DO-G16 dam. Red points are
progeny of DO-G16-107.

(PDF)

S6 Fig. TR is variable in DO and CC females. TRs (points) and 95% confidence intervals
(lines) for each female from the different types of crosses indicated in the legend. Gray points
represent crosses between heterozygous DO females and FVB/NJ males. All other crosses are
those that appear in Fig. 1. Females with a mutant R2d2"*” allele are excluded. Dotted line
shows Mendelian expectation of 0.5.

(PDF)

S7 Fig. Lethality is not sufficient to explain observed TRD. The ratio of observed to expected
litter size [(ALSgxp—ALSops) / ALSE,] under a model in which TRD is explained solely by le-
thality (see Materials and Methods) is shown for TRs between 0.5-1.0 (black line), where ex-
pected litter size is 8.4 (the mean litter size of DO females without TRD). Dotted lines show the
relationship between lethality and TR for three representative TR values (0.92 represents the
threshold used in the text to define DO females with extreme TRD); for each value, the ex-
pected ratio and equivalent litter size are shown. Colored squares show aggregate values for
three of the test crosses shown in Table 1: light blue = cross 12, (NOD/ShiLt]JxWSB/Ei])F1;
pink = cross 13, (129S1/SvImJxWSB/Ei])F1; dark blue = cross 15, (NZO/HILtJxWSB/Ei])F1.
Other shapes show values for individual DO females (identified with “«x” in S1 Table). Females
with a mutant R242"*2 allele are excluded. Note that females below the black line have TRs
that are too high to be explained solely by lethality given their average litter sizes.

(PDF)

S8 Fig. Embryonic lethality at midgestation. Count of dead embryos per dam at mid-gestation
in heterozygous dams. Filled points, dams with TRD; open points, dams with no TRD. Points
are jittered to reveal coincident values.

(PDF)

S9 Fig. Effect of R2d2 genotype on ovulation rates and live embryos in (M16i x L6)F2 females.
Ovulation rate, in oocytes per dam A), and count of live embryos per dam B), according to ge-
notype at R2d2, assayed by TagMan. Genotypes are coded as LL = homozygous L6, ML =
heterozygous, MM = homozygous M16i.

(PDF)

$10 Fig. Chr 2 haplotypes in DO and CC females. Chr 2 haplotypes in R2d2 heterozygous
dams assessed for TR. Shown colored by CC founder strain (see legend in S2 Fig.) are the hap-
lotypes found in cis (left panel) and trans (right panel) to the WSB/Ei] allele in females A) with
TRD and B) without TRD. Females with a mutant R2d2"2 allele are excluded. The black

box shows the boundaries of the R2d2 candidate interval.

(PDF)
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S11 Fig. Chr 2 haplotypes in DO females heterozygous for a copy-number loss at R2d2.
Haplotypes are shown colored by CC founder strain (see legend in S2 Fig.). White A indicates
location of deletion. Phasing is arbitrary except in DO-G13-044 (G2 dam in family DO-G13-
44), whose haplotypes could be phased by manual inspection of offspring genotypes. Copy
number at the R2d2 locus for each chromosome (estimated from TaqMan normalized AC, val-
ues in progeny bearing that chromosome) is indicated at right: first the best estimate of integer
copy number, then mean of point estimates across progeny + 1 standard error.

(PDF)

S12 Fig. TR and copy number at R2d2 in the progeny of (NU/JxC57BL/6])F1 and DO-G16 fe-
males. Filled points, heterozygous samples; open points, homozygous control samples. Progeny
can be clearly divided into two classes (high normalized AC,, NU/J or WSB/Ei]J allele; low nor-
malized AC,, alternate allele), demonstrating that the TaqgMan assay is appropriate for genotyp-
ing at R2d2. Progeny of additional DO-G13 and DO-G16 samples suspected to carry low-copy
alleles are shown for comparison.

(PDF)

$1 Table. Transmission ratio and litter size in R2d2"*N"WS® heterozygous DO, CCxDO and
CCxCC dams. For each dam, the numbers of offspring having each of the two possible geno-
types is shown, along with their ratio (TR) and p-value for a one-sided exact binomial test of
deviation from the Mendelian expectation of 0.5; the average litter size (ALS) + standard devia-
tion (ALS.SD); the number of live/resorbed embryos counted in utero at mid-gestation of the
final litter; the 95% confidence interval (CI) of the TR; the average number of WSB/EiJ and
non-WSB/Ei] alleles per litter; the maximum litter size; the TagMan AC, value, standard devia-
tion, and predicted copy number; and the TRD classification: N = no TRD (TR < 0.6 or p > =
0.1), L =low TRD (TR > 0.6 and p > 0.05), M = intermediate TRD (p < 0.05, 0.6 > TR < 0.92),
H = high TRD (TR > 0.92); U = unclassified (sample size < 10), X = low copy number due to
deletion. Females used in determining the R2d2 candidate interval (Fig. 1) are shown in bold.
(XLSX)

S2 Table. Reference sequence positions of copy number expansion in WSB/EiJ and SPRET/Ei].
Start and end positions (NCBI/37) and sizes are shown for the regions of the reference
sequence exhibiting copy number gains.

(XLSX)

$3 Table. MDA markers within R2d used for sum intensity calculations.
(XLSX)

$4 Table. MegaMUGA markers within R2d used for sum intensity calculations.
(XLSX)

S5 Table. R2d2 Allele frequencies in CC populations. Extinct: CC lines that have gone extinct
during the inbreeding process; PreCC: CC lines that are not fully inbred; Available: fully inbred
CC lines that are available for purchase. Data sets have some degree of overlap. Expected allele
frequency in the absence of TRD is 0.125.

(XLSX)

$6 Table. Primers used for PCR genotyping. There are two rows for each amplicon, one for the
forward strand primer and one for the reverse strand primer. The reference position of the first
based of the primer sequence is given (NCBI/37).

(XLSX)
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