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Abstract

Studies of gene expression are common in toxicology and provide important clues to mechanistic 

understanding of adverse effects of chemicals. Most prior studies have been performed in a single 

strain or cell line; however, gene expression is heavily influenced by the genetic background, and 

these genotype-expression differences may be key drivers of inter-individual variation in response 

to chemical toxicity. In this study, we hypothesized that the genetically-diverse Collaborative 

Cross (CC) mouse population can be used to gain insight and suggest mechanistic hypotheses for 

the dose- and genetic background-dependent effects of chemical exposure. This hypothesis was 

tested using a model liver toxicant trichloroethylene (TCE). Liver transcriptional responses to TCE 

exposure were evaluated 24 hours after dosing. Transcriptomic dose-responses were examined for 

both TCE and its major oxidative metabolite trichloroacetic acid (TCA). As expected, peroxisome- 

and fatty acid metabolism-related pathways were among the most dose-responsive enriched 

pathways in all strains. However, nearly half of the TCE-induced liver transcriptional perturbation 

was strain-dependent, with abundant evidence of strain/dose interaction, including in the 

peroxisomal signaling-associated pathways. These effects were highly concordant between the 

administered TCE dose and liver levels of TCA. Dose-response analysis of gene expression at the 
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pathway level yielded points of departure similar to those derived from the traditional toxicology 

studies for both non-cancer and cancer effects. Mapping of expression-genotype-dose relationships 

revealed some significant associations; however, the effects of TCE on gene expression in liver 

appear to be highly polygenic traits that are challenging to positionally map. This study highlights 

the usefulness of mouse population-based studies in assessing inter-individual variation in 

toxicological responses, but cautions that genetic mapping may be challenging because of the 

complexity in gene-exposure-dose relationships.

Introduction

Gene expression profiling is widely used in the field of toxicology and provides important 

insights into molecular changes and potential mechanisms of adverse health effects from 

chemical exposure (Burczynski et al. 2000; Harrill and Rusyn 2008). Transcriptomic 

signatures of chemical exposures have been widely used in chemical safety evaluation and 

large reference databases exist to enable comparative analyses and predictive modeling 

(Fostel 2008; Ganter et al. 2005; Uehara et al. 2010). In addition, many studies demonstrate 

the value of transcriptomic data-derived dose-response information for both hazard 

identification and quantitative risk assessment (Andersen et al. 2008; Thomas et al. 2013a) 

and pathway-based dose-response analysis of transcriptomic data displayed concordance 

with traditional apical endpoints (Thomas et al. 2007; Thomas et al. 2011; Thomas et al. 

2013a; Zhou et al. 2017). For instance, a key step in deriving exposure limits in traditional 

risk assessments involves estimating a “point of departure” (POD) from a chronic 

experimental animal study – e.g., a lifetime dose rate in mg/kg-d estimated to be without a 

biologically significant, adverse toxic effect. These recent studies have demonstrated that 

“transcriptional” PODs – i.e., acute dose levels at which gene expression pathways begin to 

be perturbed – can serve as surrogates for traditional PODs with an accuracy within an order 

of magnitude. Indeed, more broadly, toxicogenomics data are making their way into decision 

making for both drugs and environmental chemicals (Sauer et al. 2017; Xu et al. 2016).

The majority of available gene expression data in toxicology have been collected in 

genetically homogenous (e.g., a single strain or cell line) or undefined (e.g., outbred strains 

or mixtures of cells from multiple individuals) model systems. However, it is well 

established that gene expression, both basal and disease/treatment-perturbed, is heavily 

impacted by genetic variation among individuals (Bradford et al. 2011; Bystrykh et al. 2005; 

Chesler et al. 2003; Gatti et al. 2007; Harrill et al. 2009a; Schadt et al. 2008; Schadt et al. 

2003). Early studies of expression quantitative trait loci (eQTL) were conducted in panels of 

inbred mouse strains or human cell lines where population stratification was a challenge 

(Gatti et al. 2009) and recent studies in more heterogeneous mouse models such as Diversity 

Outbred (DO) and Collaborative Cross (CC) show greater promise of characterizing and 

replicating eQTLs (Crowley et al. 2015).

Studies of chemical effects using population-based models, both in vivo and in vitro, are 

increasingly common (Abdo et al. 2015; Church et al. 2015; Cichocki et al. 2017; Eduati et 

al. 2015; French et al. 2015; Luo et al. 2018; Mosedale et al. 2017; Venkatratnam et al. 

2017). Powered by the balanced genetic diversity represented in the DO (Churchill et al. 
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2012) and CC (Threadgill et al. 2011) populations, these mouse models enable exploration 

of causal variants driving molecular variation that result in phenotypic differences (Harrill 

and McAllister 2017). Furthermore, characterization of the genetics-dependent and -

independent transcriptional responses to chemical exposure is valuable for elucidating the 

extent of and potential mechanisms underlying such variation (Church et al. 2015; Harrill et 

al. 2009a; Mosedale et al. 2017).

The ensuing challenge in toxicology and environmental health is to characterize dose-

response relationships and gene expression in studies of chemical exposure while harnessing 

the power of genetic variation. The complexity and cost of population-based studies that 

include multiple doses and parallel characterization of multiple dimensions of toxicokinetics 

(absorption, distribution, metabolism, and excretion of toxic substances), toxicodynamics 

(biological responses elicited at the target tissue site), and inter-individual variation present 

unique challenges and may be best addressed using case studies of well-characterized 

toxicants (Rusyn et al. 2010). Thus, we chose trichloroethylene (TCE), a ubiquitous 

contaminant and a known carcinogen in both humans and rodents (Rusyn et al. 2014). TCE 

is a chemical with known variation in both toxicokinetics (Chiu et al. 2014) and 

toxicodynamics (Bradford et al. 2011). The objective of this study was to evaluate and 

characterize genetic background-, dose- and interaction-effects of TCE on liver gene 

expression, and to determine variation in dose-pathway relationships in a large genetically-

diverse mouse population. Liver transcriptomic data from 50 strains of CC mice that were 

treated acutely with one of four doses of TCE was modeled to identify genes and pathways 

that exhibited significant strain, dose, or strain by dose interaction effects. In addition, we 

conducted genome-wide linkage mapping to identify loci associated with variation in liver 

TCA levels.

Materials and Methods

Animals and Treatments:

The in life portion of the study and tissue collection was detailed in (Venkatratnam et al. 

2017). In brief, adult male mice (8–12 weeks old) from 50 CC strains were orally 

administered a single dose of 0, 24, 80, 240 or 800 mg/kg TCE (Sigma Aldrich, St. Louis, 

MO) in 5% Alkamuls EL-620 vehicle (Solvay, Deptford, NJ). Each strain had 5 mice, with 

one mouse randomly assigned to each dose group to maximize the statistical power of the 

study by maximizing the number of strains tested (Kaeppler 1997). Mice were sacrificed 24 

h after treatment and tissues were flash frozen in liquid nitrogen and stored at −80oC until 

analysis.

TCA level in liver:

Analyses were performed by a modification of US EPA method 552.2 (Domino et al. 2003) 

as detailed in (Venkatratnam et al. 2017). Data on TCA levels in liver across all CC strains 

was reported in (Venkatratnam et al. 2017).
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RNA extraction and sequencing:

Left-lobe of livers was pulverized with pestle and mortar pre-chilled in liquid nitrogen. RNA 

was extracted from ~20 mg of pulverized tissue using RNeasy Qiagen mini Kit (Qiagen, 

Valencia, CA). Concentration of extracted RNA was measured using NanoDrop 2000 

(Thermo Fisher Scientific, Wilmington, DE). RNA libraries were prepared using Illumina 

TruSeq Stranded Total RNA kit (Illumina, San Diego, CA) with Ribo-Zero Gold rRNA 

removal kit (Illumina). The quality of extracted RNA was tested using Fragment Analyzer 

(Advanced Analytical Technologies, Ankeny, IA). RNA Quality Number (RQN) equal or 

greater than 7 was used as a cutoff for RNA quality to further proceed with the preparation 

of the sequencing libraries. RNA-Seq of 50 base-pair single-end reads was conducted using 

Illumina HiSeq 2500 instrument (Illumina) at the depth of ~50 million reads/sample. Raw 

reads were trimmed for any sequencing adaptors and low quality bases using Trimmomatic 

(Bolger et al. 2014). Reference genomes and inferred marker founder origin for CC mice 

were downloaded from University of North Carolina Systems Genetics Core Facility (http://

csbio.unc.edu/CCstatus/index.py?run=Pseudo). Filtered reads were mapped to each of the 

corresponding CC reference genome using TopHat version 2.0.3 (Kim et al. 2015). 

Resulting alignments were re-mapped to reference mm10 assembly coordinates using lapels 

(https://github.com/shunping/lapels). HTSeq (Anders et al. 2015) was used to generate raw 

read counts per gene using intersection-nonempty parameter to account for ambiguous read 

mappings. Differential gene expression tests were then performed with DESeq2 (Love et al. 

2014).

Statistical analyses:

Normalized count data on 23,948 genes for 246 combinations for four TCE and one vehicle 

treatments from CC strains was generated with R (version 3.3) package DESeq2 as detailed 

above. Genes with < 2 counts across all treatments were removed, leaving 19,870 genes for 

analysis. The “dose” vector was linearized by first replacing the vehicle (i.e., zero) TCE 

dose with 8 (the average distance between doses was 1/3 the prior dose) followed by a 

natural log transformation. DESeq2 was used to derive p-values and adjusted p-values for 

the main effects of dose and strain, as well as their interaction. In brief, counts were first 

modeled as: counts ~ strain + ln(dose). Genes exhibiting a linear dose effect were identified 

with a likelihood ratio test comparing a reduced model of counts ~ strain. Similarly, genes 

exhibiting a strain effect were identified with a likelihood ratio test comparing a reduced 

model of counts ~ ln(dose) to the full model. Lastly, genes with an interaction effect were 

identified comparing a reduced model of counts ~ strain + ln(dose) to a full model of counts 

~ strain + ln(dose) + strain*ln(dose). In a similar fashion, these analyses were repeated using 

the natural log of measured liver TCA metabolite concentration in nmol/g (with a +1 offset 

to guard against taking logarithm of zero) as a predictor instead of TCE dose. Differential 

expression gene results were subjected to multiple comparison adjustment by computing 

Benjamini-Hochberg false-discovery q-values as implement in DESeq2. Due to the large 

number of significant findings, stringent significance criteria (q<0.001) and absolute counts 

(read counts > 10) were used as criteria for further analysis.
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Pathway analyses:

Pathway enrichment analysis was conducted using The Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) (Dennis et al. 2003). The top 3000 or 

fewer genes with Bonferroni corrected p values (q < 0.001), ordered based on the q value 

significance, were uploaded to DAVID to identify pathways influenced by dose-, strain-, or 

interaction-effects.

Comparison of Transcriptomic Points of Departure Doses with Apical Data.—
For dose-response expression studies, the BMDExpress software (Yang et al. 2007) has been 

used to evaluate PODs for expression changes of individual genes with exposure. 

Specifically, this software estimates the “benchmark dose” (BMD) at which gene expression 

changes relative to controls occur by fitting a parametric model to the dose-expression data. 

Although the current study has a large sample size, the sample size of 5 per strain presents a 

challenge in computing strain-specific benchmark doses, and in fact many of the models 

provided in BMDExpress would suffer from extreme overfitting with such small sample 

sizes. To best accord with our differential expression analyses and to benefit from the 

variance shrinkage models used in expression analyses, we devised the following approach 

to compute a strain-specific pathway BMD analogue. First, we used the strain-specific linear 

modeling routine from DESeq2 as described to obtain slope β1  and intercept β0  estimates 

from the software’s modeling of logarithmic gene expression, as well as the Wald-like t-
statistic (which utilizes variance shrinkage estimation). Next, an artificial model standard 

deviation σ was computed from the model in order to be consistent with the reported p-

value. Specifically, if t* represents the shrunken t-statistic, σ =
β1
t* Σi xi − x 2 for 

x=ln(dose). Finally, we have the per-gene BMD = ln control dose + sign β1 σ /β1 The final 

BMD reflects the point at which the dose-response fit is estimated to exhibit a 1 standard-

deviation departure from control expression, using shrunken estimates of variation that are 

obtained from the DESeq2 modeling. To compute a pathway (gene set) BMD, we used the 

median BMD of all genes assigned to the pathway.

As described in the introduction, previous studies have suggested that transcriptomic PODs 

correlated with those for apical endpoints, and that therefore transcriptional BMD values 

have the potential to serve as POD for quantitative risk assessment (Thomas et al. 2011). We 

therefore compared transcriptomic BMDs with apical BMDLs used for liver effects in the 

U.S. EPA’s Toxicological Review for TCE (U.S. EPA 2011a, b). Specifically, U.S. EPA, in 

their quantitative evaluation of the effects of TCE on the liver, selected increased liver/body 

weight ratio BMDLs in mice and rats for the PODs for liver non-cancer effects, and the 

BMDL for increased carcinomas in mice for the POD for liver cancer effects. Because apical 

endpoint PODs were derived from both rats and mice, each with differing toxicokinetics, we 

standardized all dose units to human equivalent doses (HEDs) based on equivalent liver 

oxidative metabolism, using the most up-to-date multi-species physiologically-based 

pharmacokinetic (PBPK) model (Chiu and Ginsberg 2011; Chiu et al. 2009). Median 

estimates of each internal dose metric from Chiu et al. (2009) were used. An additional 

reason for this standardization is that margins of exposure can be readily computed and 
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compared based on the human equivalent dose. Apical endpoint HEDs were then compared 

to median transcriptional BMD values.

Genetic mapping and eQTL analyses:

In principle, mapping of traits in CC lines can be performed by analysis of variance, using 

for each locus the ancestral origin from each of the 8 founding CC lines as a categorical 

predictor. In practice, for many loci slight uncertainties of CC line origin remain, due to 

incomplete information on crossover events in the CC breeding outcomes. Hidden Markov 

modeling enables probabilistic statements of the parental line of origins for each locus, 

expressed as probabilities (summing to 1.0) for the eight founder lines. For the vast majority 

of loci and CC lines, a very large probability (greater than 0.95) is placed on the most likely 

parental origin for the locus. We performed regression modeling using trait as a response, 

and the probability vector as a predictor for a model with 8 degrees of freedom. Each trait, 

whether a phenotype such as TCA level, or an expression trait, was first transformed using 

rank-inverse normal transformation (GTEx Consortium 2015) to ensure robustness to 

outliers. eQTL analysis was performed separately for each dosage group using the R 

package DOQTL1, and results were compared to direct likelihood ratios computed using 

regression F-statistics as described below to ensure correct computation. Expression traits 

were used only if they had both a mean number of reads ≥5 and a nonzero read proportion of 

at least 10%.

To accord with standard linkage mapping, the log10 likelihood ratio (LOD score) for the 

fitted model vs. the null was used to represent mapping evidence. At each locus, a p-value 

can be obtained from LOD scores via chi-square testing and standard likelihood ratio theory. 

However, initial investigation by permutation showed that p-values based on normal theory 

regression F-statistics were superior, i.e. were more nearly uniform under the null, and so 

were used for multiple comparisons as described below.

To facilitate multiple comparisons and to acknowledge that cis-eQTLs are more common 

than trans-eQTLs, we obtained separate cis- and trans- p-values for each expression trait as 

follows. First, 1000 permutations of a normally-distributed “phenotype” were performed, 

and the linkage F-statistics computed across the genome. As the rank-inverse normal 

transformation produces identical transformed values for any trait (provided there are no 

ties), the permutations formed a generic set of sampling outcomes that are applicable to any 

quantitative trait. For each permutation, the maximum F-statistic was recorded for each 

chromosome. Thus, for each chromosome we obtained a set of 1000 maxima on the 

chromosome (cis) and 1000 maxima on the remaining chromosomes (trans). For each of 

these 40 sets of permutations (20 chromosomes, both cis and trans), the maximum F-statistic 

was modeled via maximum likelihood fitting to a Gompertz extreme value distribution, 

providing the basis for cis- and trans- p-values for each expression trait. By construction, 

these p-values control for multiple comparisons across different loci. In order to control for 

multiple comparisons across different genes, each of the sets of cis p-values and trans p-

values were adjusted using the qvalue package in R, resulting in false discovery q-values for 

both cis and trans. For non-expression traits such as TCA levels, the overall maximum F-
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statistic distribution was used in the extreme value modeling to obtain a genome-wide p-

value.

Results

Dose-, strain- and interaction-related effects of TCE on liver gene expression

Previous studies of inter-strain variation of TCE-induced responses demonstrated that liver 

transcriptomic responses are strongly dependent on genetic background and that peroxisome 

proliferator-activated receptor-associated pathways represented some of the most 

pronounced genetic-background dependent molecular effects of TCE treatment in mouse 

liver (Bradford et al. 2011). In this study, to elucidate how TCE responses differ by genetic 

background- and dose-expression relationships, we used liver gene expression data from 50 

CC strains and 4 dose groups (plus vehicle). Dose, strain, and interaction effects were 

modeled for each transcript for both TCE dose and liver levels of TCA in each mouse. 

Exemplar plots of genes that were significant for one or several of these relationships, and 

are relevant to the effects of TCE, are displayed in Figure 1. Panel A shows the dose-

response relationships for the administered dose of TCE and panel B for a correlation with 

liver TCA level in each individual mouse. We observed that expression of UDP-

glucuronosyltransferase family 2 member A3 (Ugt2a3) was down-regulated with TCE dose, 

but this effect on gene expression was strain independent, with no dose by strain interaction 

effect. The effects of TCE on UDP-glucuronosyltransferase enzymes is not well 

characterized, but it is known that glucuronidation of trichloroethanol, a major oxidative 

metabolite of TCE, is a detoxification mechanism (Chiu et al. 2007). Baseline expression 

levels of alcohol dehydrogenase 1 (Adh1) varied dramatically by strain but did not exhibit a 

significant dose-response to TCE or a dose by strain effect. Alcohol dehydrogenases are 

involved in the biotransformation of TCE metabolites chloral and chloral hydrate to 

trichloroethanol (Lash et al. 2014) and our finding of a high degree of inter-individual 

variation is consistent with previous observations in both humans and mice (Bronley-

DeLancey et al. 2006; Venkatratnam et al. 2017). In contrast to the Ugt2a3 and Adh1 
examples, the expression of acyl-CoA thioesterase 7 (Acot7) exhibited not only a strong 

baseline strain effect, but also a strain by dose interaction effect. Acot7 is a PPARα-

responsive gene (Rakhshandehroo et al. 2010). Indeed, PPARα-signaling plays a critical role 

in the effects of TCE in rodent liver (Rusyn et al. 2014). Of note, all three example genes 

depicted in Figure 1 exhibited highly significant dose, strain and interaction effects 

regardless whether TCE dose, or liver TCA concentrations were used as the “dose”, 

demonstrating that at least for these exemplars, that TCA plays a key role in transcriptional 

responses to TCE in mouse liver, likely through its agonism to PPARα (Maloney and 

Waxman 1999).

Overall, we found that 5,285 transcripts were significant (after multiple testing correction as 

described) for the effect of TCE dose, 11,820 for the effect of strain, and 2,140 for the 

interaction between the two (Figure 2, left column of Venn diagrams). When liver TCA was 

used as an input into the model, 4,769 transcripts were significant for TCA, 13,920 for 

strain, and 2,242 for interaction (Figure 2, right column). Interestingly, a very small number 

of transcripts were purely dose-dependent, without an effect of strain or interaction, which is 
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less than 1% of the transcriptome. In contrast, the effect of strain on the transcriptome was a 

major factor, which is greater than 50% of all transcripts that were mapped. This observation 

is consistent with the dominant effect of genetic variation on transcription in the liver (Gatti 

et al. 2007; Schadt et al. 2008), and general findings on the impact of genetic variation in 

gene expression regulation (GTEx Consortium 2013, 2015).

Whether analyzing the effects of TCE dose on expression in liver, or the relationship 

between liver TCA concentration and liver expression, we found significant overlap in 

expression signatures. This finding is not completely unexpected, as there is strong 

correlation (r=0.78, ρ=0.86) between TCE dose and liver TCA levels (Figure 3A). The 

importance of including the dose-response considerations in the analysis of the population-

wide transcriptional response to toxicity is illustrated in Figure 3B. While there is a 

significant positive correlation (r=0.49, p<0.001) between the number of significantly 

perturbed transcripts and liver TCA at the highest TCE dose level, this relationship is highly 

strain-variable whereby many strains with the highest liver TCA were not the most 

“responsive” transcriptionally.

Dose-, strain- and interaction-related effects of TCE on liver pathways

Next, we examined the molecular pathways perturbed by TCE in mouse liver in a dose-, 

strain-, or interaction-dependent manner. To examine concordance in pathways among TCE 

dose and liver TCA, significant Gene Ontology and KEGG pathways/category enrichment 

was examined using DAVID/EASE (q-value<0.001), for lists of transcripts with significant 

dose (Figure 3C), strain (Figure 3D), or interaction (Figure 3E) effects. Most pathways for 

the dose and strain effects were shared between TCE dose and liver TCA analyses (marked 

in green), and their level of significance was highly concordant (slopes close to 1).

A complete list of pathways from significant dose-related transcripts is provided in 

Supplemental Tables 1–5. Pathways with strong TCE dose-response relationships included 

lipid and fatty acid metabolism. Most of these were also significant for the strain effect and 

they are closely related to PPARα signaling, a finding consistent with our understanding of 

the major molecular effects of TCE in the rodent liver (Rusyn et al. 2014). Another 

prominent group of dose-responsive pathways was the effect on cell-cell adhesion and gap 

junctional intracellular communication, also consistent with previous findings that exposure 

to TCE and TCA inhibits gap junctional communications in mouse hepatocytes (Klaunig et 

al. 1989).

While there was a greater number of genes that exhibited strain-specific changes in gene 

expression, enrichment analysis yielded fewer discernable significantly enriched pathways. 

Two translation-related pathways were significant for strain alone and not dose or 

interaction. Pathways that were both strain- and dose-dependent showed that the large part 

of TCE dose-response response is highly dependent on the genetic background.

Comparison of PODs for transcriptional and apical effects of TCE in mouse liver

Next, we sought to compare transcriptomics-derived dose-response effects of TCE in this 

acute exposure study in genetically diverse CC mice to the traditional apical endpoint-

derived PODs for the same tissue but in other animal models. Specifically, we based these 
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comparisons on the effects of TCE on liver transcriptome in B6C3F1 strain (Zhou et al. 

2017) and the liver non-cancer and cancer endpoints used by U.S. EPA to derive toxicity 

values (U.S. EPA 2011a, b). For this comparison, we converted both types of PODs to 

human equivalent doses using a multi-species PBPK models, as described in Methods, and 

the results are shown in Figure 4A. Because of the lack of PBPK models specifically for CC 

mice, we used the median estimates for mice from the previous multi-species PBPK model, 

which was calibrated using data from Swiss and B6C3F1 mice (Chiu et al. 2014; Evans et al. 

2009), along with the corresponding human PBPK model. The transcriptional PODs covered 

the same range of human equivalent doses as the apical endpoints, with the most sensitive 

median BMDL (KEGG_mmu00071, fatty acid degradation) being nearly the same as the 

most sensitive apical endpoint-derived BMDL (B6C3F1 mouse liver carcinomas). Overall, 

the median transcriptional BMDLs across all pathways in CC mice were within 10-fold of 

the apical PODs for TCE effects in the liver.

A corollary of this analysis is a question of whether data from the CC population are more 

informative as compared to the analysis of the dose-response gene and pathway effects of 

TCE in B6C3F1 hybrid strain. Thus, we constructed strain-specific distributions using the 

data for the same pathways (Figure 4B). We find that B6C3F1 strain-derived data fall into 

the upper tertile of the overall population variation distribution, above the apical data-

derived PODs. Furthermore, the analysis of strain-specific effects of TCE on mouse liver 

transcriptome that is afforded by the CC population shows that certain strains are more 

sensitive (e.g., CC004/TauUnc) or resistant (e.g., CC039/Unc, CC023/GeniUnc and CC018/

Unc) and may be selected for further studies in sub-chronic and chronic exposure scenarios. 

Interestingly, although the most sensitive strain CC004/TauUnc had transcriptional PODs 

that were 10-fold lower than those of B6C3F1 mice, the median transcriptional POD for this 

strain was within 2-fold of the most sensitive apical POD.

Genetic mapping of the transcriptional effects of TCE in mouse liver

To further elucidate whether the CC model provides sufficient resolution to dissect the 

genetic underpinnings of TCE susceptibility, we conducted genome-wide linkage mapping 

to identify loci associated with variation in liver TCA levels for the highest TCE dose group. 

As reported previously (Venkatratnam et al. 2017), we identified a significant QTL on distal 

chromosome 2 (Figure 5A) associated with variation in liver TCA levels, although the robust 

mapping methods used here differ from the previous report. The previous study also reported 

that expression of PPARα-response gene Fitm2 (Fat Storage Inducing Transmembrane 

Protein-2) which resides in this locus (red arrowhead) was positively correlated with liver 

TCA levels for the highest TCE dose exposure group.

In the current study, the availability of whole-transcriptomic expression data enabled a more 

comprehensive examination of this locus for the potential association between genetic 

polymorphisms and gene expression. A linkage scan for expression of Fitm2 co-localized 

with the TCA peak region (Figure 5B) and indicates a strong eQTL. Among the 128 genes 

in a 1.5-LOD support interval for this locus from 157.7 Mb-180.1 Mb, Fitm2 (r=0.475, 

p=8.4X10−8) had the highest correlation with TCA levels (Figure 5C). Further, effects of CC 

founder alleles in this region revealed that presence of M.m.castaneous alleles in this region 
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was associated with higher expression of Fitm2 (Figure 5C). However, TCA levels and 

Fitm2 expression were substantially correlated within sets of CC strains sharing regional 

diplotypes, indicating possible additional sources of positive correlation and signaling 

potential additional complexities with confidently pointing to the genetic underpinnings of 

inter-individual variation in liver TCA levels.

To conduct a more comprehensive analysis of the genetic underpinnings of variation in 

response to TCE, we additionally performed an analysis using, for each gene and CC strain, 

the slope of the expression response (β1 in a dose-response linear model) to TCE as a trait 

for linkage mapping. To be comprehensive, we performed the analysis using β1 values from 

both simple linear regression of expression vs. ln(dose), as well as β1 values from the 

DESeq2 analyses. Separate cis and trans p-values and corresponding false discovery q-

values were obtained as described in Methods. In terms of q-values (which are corrected for 

multiple comparisons), none of the results were significant.

Finally, to identify genetic loci driving variation in transcriptomic responses, we performed 

expression quantitative trait locus (eQTL) analysis at each dose group. We observed 

suggestive trans-bands (or instances where expression of several genes are driven by a 

common locus) in chromosomes 3, 11, and 12 in the vehicle treatment group. Here 

“suggestive” indicates that nominally significant (trans p<0.05) findings were observed, 

before multiple testing correction. No trans-bands were observed at lower dose groups, but 

few trans-bands were observed at higher dose groups (data not shown). Figure 5D reports 

the numbers of significant local (cis) eQTLs at each dose group in a Venn diagram, 

illustrating variation by dose, but also considerable commonality, with 2285 genes 

significant at q<0.05 for all doses.

Discussion

It is widely acknowledged in the fields of toxicology and risk assessment that population 

variation is one of the key challenges that begets uncertainty in human health assessments of 

environmental chemicals (Zeise et al. 2013). Drug safety evaluation is usually more 

informed through studies in humans at various phases of the clinical trials, still the challenge 

of idiosyncratic adverse drug reactions is also prominent and subject to active investigations 

(Atienzar et al. 2016). Solutions to these challenges are currently few, despite the abundance 

of experimental models from cells, to animals, to human studies. For instance, the tools for 

studies of genetics in experimental model systems have been originally developed by 

geneticists (Churchill et al. 2012; The International HapMap Consortium 2003; Threadgill et 

al. 2011) and only recently have these models been used in studies of acute and repeat-dose 

exposure to drugs and chemicals (French et al. 2015; Harrill and McAllister 2017). The 

potential for how these new animal models can inform risk assessment is great, though 

example applications of incorporating these data into decision-making remain small in 

number (Chiu and Rusyn 2018). For instance, evaluation of toxicity using population-based 

in vitro and in vivo models can potentially reduce both false positive and false negative 

signals and improve hazard identification. Enhanced ability to perform genetic mapping 

allows for the identification of key biological pathways and mechanisms that may be 

involved in toxicity and/or susceptibility. In addition, population-based experimental data 
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can serve as a surrogate for human variation, and thus be used to quantitatively estimate the 

degree of human toxicokinetic/toxicodynamic variation and thereby increase confidence in 

the dose-response step of risk assessment that sets health-protective exposure limits.

The difficulty in translating the data from studies in population-wide experimental models to 

real decisions is due not only to the complexities of the relationships between genotypes and 

phenotypes, but also because of impediments resulting from “cultural” differences between 

the research questions in genetics, decades-old “standard practices” in toxicology studies, 

and the needs of decision-makers. Specifically, there appears to be a chasm in what 

constitutes the most valuable outcome(s) of a toxicology study in a population model. Is it a 

susceptibly locus, the molecular determinant(s) of inter-individual variation that may be 

used as a biomarker, a quantitative estimate of the extent of inter-individual variation, a 

better “model” (i.e., strain or cell line) for susceptible humans, or all of the above?

This study takes the “all of the above” point of view. It adds to the body of knowledge on the 

utility of the mouse population-based experimental models in toxicology and risk 

assessment by examining transcriptomic data obtained from a study in CC mice for 

characterization of strain-dependent and -independent mechanisms of TCE toxicity, 

discovery of the potential susceptibility loci, as well as dose-response assessment and 

derivation of POD values. This study also provides further evidence of the relative impact of 

dose and strain variation on transcription, and is among the largest studies to date that have 

combined large populations, transcriptomics and toxicity phenotyping.

We found that all known pathways of liver toxicity of TCE (Cichocki et al. 2016; Rusyn et 

al. 2014) are perturbed in both strain- and dose-dependent manner. Even though strain 

effects were predominant in terms of liver transcriptome among CC strains, TCE effects 

were prominent and largely dependent on the formation of TCA. However, despite high 

concordance in dose-, strain- and interaction-effects between TCE dose and liver TCA 

levels, inter-individual variation likely depends on factors other than metabolism to TCA. 

This finding is highly informative with respect to not only the interpretation of the strain 

differences in the mouse, but also more generally to the extrapolation of experimental animal 

data to humans. Specifically, the diversity of the pathways involved and the complexity of 

the signaling mechanisms that were largely strain-dependent caution against assuming that 

studies in knockout and/or transgenic animals are any more informative, or human-like, 

models than traditional rodent models. This study also supports the utility of the information 

on the molecular pathways, rather than individual genes, for cross-species translation and 

biomarker discovery, similar to the conclusions of the study of tolvaptan-induced liver injury 

in CC population (Mosedale et al. 2017).

Additionally, studies in genetically defined population-wide models enable discovery of the 

susceptibility loci through genetic mapping. There are a number of published examples 

when susceptibility loci and candidate genes were successfully identified for drug and 

chemical-associated toxicity phenotypes (French et al. 2015; Harrill et al. 2009b; Mosedale 

et al. 2017; Venkatratnam et al. 2017). Despite some success, these studies have pointed out 

that chemical-induced toxicities are highly complex traits and thus are polygenic in nature. 

Our study confirms this sentiment by also exploring the gene expression dimension. We 
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found that TCE-mediated transcriptional responses in mouse liver may be highly polygenic 

in nature, so that mapping multiple susceptibility loci may be difficult with the sample size 

of 50 CC strains. One possible solution is to increase the number of strains (Kaeppler 1997), 

or replicates per strain in future studies; however, the cost and complexity of these studies is 

likely prohibitive and not proportionate to the value of information that may be obtained. 

While the knowledge of the exact susceptibility genes/loci may be of use for drugs in the 

context of “precision medicine,” even if such are discovered they are likely to be less 

informative in the context of human health assessment of TCE and other chemicals for 

which genetic testing prior to exposure is highly improbable.

An outcome of this study that is most likely to be of use for human health risk assessment is 

the exploration of dose-response relationships in response to TCE at the transcriptomic and 

population levels. The paper by French and co-workers (French et al. 2015) was the first to 

demonstrate the value of mouse population studies for quantitative dose-response modeling 

that is directly applicable for risk assessment. Similarly, we have showed previously for TCE 

that population-based estimates of toxicokinetic parameters from a study in mice are 

concordant to those for data from humans (Chiu et al. 2014). Hence, our study explored the 

quantitative aspects of molecular sequelae of exposure to TCE in a mouse population and 

used gene expression to derive PODs for various pathways and strains. Thomas and 

coworkers have demonstrated that pathway-based POD based on gene expression data from 

short-term exposure studies are well correlated with the POD on the apical endpoints derived 

from traditional 90 day and 2 year animal studies (Farmahin et al. 2017; Thomas et al. 2011; 

Thomas et al. 2013b).

We recently reported that in B6C3F1 mice, transcriptional PODs for TCE correlated well 

with PODs for apical endpoints, after correcting for toxicokinetics (Zhou et al. 2017). Here, 

we found a similar correspondence to apical endpoint PODs using transcriptomic data from 

a genetically diverse mouse population. Previously, it was found that the transcriptional POD 

were more conservative, generally within one order of magnitude (Thomas et al. 2011). In 

our earlier study in B6C3F1 mice, transcriptional PODs for TCE were also within 10-fold of 

apical PODs, but the differences were in both directions, i.e. not consistently conservative. 

Here, in CC mice, the transcriptional and apical endpoint PODs for TCE substantially 

overlapped, a large number of transcriptional pathways, including the most sensitive falling 

within the range of the apical endpoint PODs. This greater apparent correlation suggests that 

using CC mice may provide a more robust transcriptional POD because of the incorporation 

of genetic diversity that reduces the potential impact of outliers, but this hypothesis needs to 

be tested for additional chemicals and target tissues. Moreover, as was the case with Zhou et 

al. (2017), conversion to human equivalent doses has the additional utility of being directly 

comparable to human exposure estimates and derivation of the margins of exposure. These 

results provide further evidence that transcriptomic data can be used as surrogates for in vivo 
PODs, and suggest that a population-based approach might be more robust than using a 

single strain.

In sum, our study is among the first to explore the linkages between gene expression and 

genetic polymorphisms in a toxicological context. This innovative approach extends the 

common method to analyzing toxicity pathway perturbations to the population level, 
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allowing for an exploration of gene-environment interactions, which are thought to be the 

basis of phenotypic variation across the population. Using the CC population and TCE liver 

effects as a prototypical example, we have demonstrated that adding the dimension of 

genetic diversity has multiple potential benefits. First, by identifying pathways that are 

dependent on strain, treatment, or their interaction, we obtain deeper insights into 

toxicological mechanisms. Second, it enables the possibility of genetic mapping to identify 

susceptibility loci, although this may be challenging for polygenic traits such as TCE-

induced liver effects. Finally, at least in this case example, conducting gene expression dose-

response analysis across a population appears to be more robust than using a single strain in 

terms of the correlation between transcriptional and apical PODs. Overall, our study 

demonstrates the utility of mouse population-based studies in addressing the key issue of 

inter-individual variation in the human health risk assessment of chemical exposures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of genes (Ugt2a3, Adh1, and Acot7) that were affected by exposure to TCE in 

mouse liver in genetic background-, dose- or interaction-dependent manner. Top panel (A) 
shows correlation with administered TCE dose; bottom panel (B) is correlation with liver 

TCA levels at 24 hrs after dosing. Each circle represents gene expression in a CC mouse. 

Each line represents a linear dose-response fit for each CC strain. The y-axis represents 

normalized counts of the expression. The x-axis in the top panel represents administered 

TCE dose (mg/kg) and in the bottom panel represents liver TCA levels (nmol/g) in the CC 

population. False discovery q-values (q≤0.001) for dose and strain main effects, as well as 

their interaction, are displayed in each box.
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Figure 2. 
Venn diagrams representing total number of transcripts from the transcriptome that are 

strongly influenced by genetic background-, dose-, or interaction-effects with administered 

TCE dose (left panel) or liver TCA (right panel) as dose inputs. Numbers within each sector 

of circles represents either unique or common transcripts. Percentages represent the total 

percent of transcripts from the liver transcriptome that are common between TCE dose and 

TCA level analyses.
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Figure 3. 
Concordance between TCE dose and liver TCA levels based on gene- and pathway-based 

analyses. (A) Scatter-plot showing individual animal’s liver TCA (nmol/g) as compared to 

the administered TCE dose (mg/kg). The inset shows the results of the correlation analysis 

of these data. (B) A relationship between liver TCA levels and the number of significantly 

(q<0.05) perturbed transcripts by the TCE (800 mg/kg) in each CC strain. The inset shows 

the results of the correlation analysis of these data. (C) Concordance in pathways that were 

significantly (q<0.01) associated with dose (top), strain (middle), or interaction (bottom) for 

the analyses where TCE dose (x-axis) or liver TCA (y-axis) were used as dose inputs. Each 

dot is a KEGG or GO pathway/category. Pathways that were significant only for TCE are 
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colored black, only for liver TCA are colored red and pathways that were significant for both 

are colored green.
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Figure 4. 
Comparison of point of departures (PODs) across significantly (q<0.001) perturbed 

pathways due to genetic background-, dose-, and interaction-effects in the CC model with 

apical endpoints from sub-chronic or chronic TCE studies in B6C3F1. Box plots represent 

PODs, converted to human equivalent dose (mg/kg-d) using mouse and human 

physiologically-based pharmacokinetic models, for the following: apical endpoints (black); 

transcriptional PODs for B6C3F1 mice from Zhou et al. (2017) (green); transcriptional 

PODs for CC mice aggregated across pathways and strains (blue, panel A only); 

transcriptional PODs for individual pathways, aggregated across CC strains (red, panel A); 

or transcriptional PODs for individual CC strains, aggregated across pathways (red, panel 
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B). See Supplemental Table 6 for full listing of abbreviations used. Vertical grey lines 

identify Human Equivalent Doses corresponding to each administered dose.
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Figure 5. 
(A) A genome-wide linkage scan for liver TCA levels at the highest TCE dose (800 mg/kg) 

in 50 CC lines identifies a significant QTL on chromosome 2. Location of a candidate gene 

Fitm2 is marked with a red arrowhead. (B) Genome-wide linkage scan of Fitm2 gene 

expression shows a cis-eQTL localizing in the same region as for (A). (C) Scatter plot 

representing normalized liver TCA levels versus normalized Fitm2 expression, with dots 

representing CC founder alleles in the peak region. (D) Venn diagrams displaying unique 

local eQTLs by administered TCE dose.
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